research

Quadrature domains and kernel function zipping

Abstract

It is proved that quadrature domains are ubiquitous in a very strong sense in the realm of smoothly bounded multiply connected domains in the plane. In fact, they are so dense that one might as well assume that any given smooth domain one is dealing with is a quadrature domain, and this allows access to a host of strong conditions on the classical kernel functions associated to the domain. Following this string of ideas leads to the discovery that the Bergman kernel can be zipped down to a strikingly small data set. It is also proved that the kernel functions associated to a quadrature domain must be algebraic.Comment: 13 pages, to appear in Arkiv for matemati

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020