2,891 research outputs found

    Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment

    Get PDF
    This is the published version. Copyright American Geophysical Union[1] Groundwater consumption by phreatophytes is a difficult-to-measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated-unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified

    Bioinspired engineering of exploration systems for NASA and DoD

    Get PDF
    A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers

    Sub-Saturn Planet Candidates to HD 16141 and HD 46375

    Get PDF
    Precision Doppler measurements from the Keck/HIRES spectrometer reveal periodic Keplerian velocity variations in the stars HD 16141 and HD 46375. HD 16141 (G5 IV) has a period of 75.8 d and a velocity amplitude of 11 m/s, yielding a companion having Msini = 0.22 Mjup and a semimajor axis, a = 0.35 AU. HD 46375 (K1 IV/V) has a period of 3.024 d and a velocity amplitude of 35 m/s, yielding a companion with Msini=0.25 Mjup, a semimajor axis of a = 0.041 AU, and an eccentricity of 0.04 (consistent with zero). These companions contribute to the rising planet mass function toward lower masses.Comment: 4 Figure

    A Planetary Companion to the Nearby M4 Dwarf, Gliese 876

    Get PDF
    Doppler measurements of the M4 dwarf star, Gliese 876, taken at both Lick and Keck Observatory reveal periodic, Keplerian velocity variations with a period of 61 days. The orbital fit implies that the companion has a mass of, M = 2.1 MJUP /sin i, an orbital eccentricity of, e = 0.27+-0.03, and a semimajor axis of, a = 0.21 AU. The planet is the first found around an M dwarf, and was drawn from a survey of 24 such stars at Lick Observatory. It is the closest extrasolar planet yet found, providing opportunities for follow--up detection. The presence of a giant planet on a non-circular orbit, 0.2 AU from a 1/3 M_Sun star, presents a challenge to planet formation theory. This planet detection around an M dwarf suggests that giant planets are numerous in the Galaxy.Comment: 13 pages, 3 Figure

    Planetary Companions Around Two Solar Type Stars: HD 195019 and HD 217107

    Full text link
    We have enlarged the sample of stars in the planet search at Lick Observatory. Doppler measurements of 82 new stars observed at Lick Observatory, with additional velocities from Keck Observatory, have revealed two new planet candidates. The G3V/IV star, HD 195019, exhibits Keplerian velocity variations with a period of 18.27 d, an orbital eccentricity of 0.03 +/- 0.03, and M sin i = 3.51 M_Jup. Based on a measurement of Ca II H&K emission, this star is chromospherically inactive. We estimate the metallicity of HD 195019 to be approximately solar from ubvy photometry. The second planet candidate was detected around HD 217107, a G7V star. This star exhibits a 7.12 d Keplerian period with eccentricity 0.14 +/- 0.05 and M sin i = 1.27 M_Jup. HD 217107 is also chromospherically inactive. The photometric metallicity is found to be [Fe/H] = +0.29 +/- 0.1 dex. Given the relatively short orbital period, the absence of tidal spin-up of HD 217107 provides a theoretical constraint on the upper limit of the companion mass of < 11 M_Jup.Comment: 15 pages, plus 6 figures. To appear in Jan 1999 PAS

    Correlates of work injury frequency and duration among firefighters.

    Get PDF

    The continuum limit in the quenched approximation

    Full text link
    Previous work at 6/g2=5.76/g^2=5.7 with quenched staggered quarks is extended with new calculations at 5.85 and 6.15 on lattices up to 323Ă—6432^3\times 64. These calculations allow a more detailed study of extrapolation in quark mass, finite volume and lattice spacing than has heretofore been possible. We discuss how closely the quenched spectrum approaches that of the real world.Comment: 4 pages, uuencoded compressed PostScript, contribution to Lattice '9

    Relative importance of dispersion and rate-limited mass transfer in highly heterogeneous porous media: Analysis of a new tracer test at the Macrodispersion Experiment (MADE) site

    Get PDF
    This is the published version. Copyright American Geophysical Union[1] A single-well injection-withdrawal (SWIW) bromide tracer test was conducted to further investigate transport processes at the Macrodispersion Experiment (MADE) site on Columbus Air Force Base in Mississippi. The bromide breakthrough curve is highly asymmetric and exhibits an early time high-concentration peak followed by an extended period of low-concentration tailing. Comparisons of results simulated by advection-dispersion (AD) and dual-domain mass transfer (DDMT) models with the field data show that the DDMT model more accurately represents the magnitudes of both the early high-concentration peak and the later low-concentration tail. For both the AD and DDMT models, the match with field data is enhanced by incorporating hydraulic conductivity information from new direct-push profiling methods. The Akaike information criterion for the DDMT models is much smaller than that for the AD models in both the homogeneous and heterogeneous cases investigated in this work. The improved match of the DDMT model with the SWIW test data supports the hypothesis of mass transfer processes occurring at this highly heterogeneous site

    Insect-Inspired Optical-Flow Navigation Sensors

    Get PDF
    Integrated circuits that exploit optical flow to sense motions of computer mice on or near surfaces ( optical mouse chips ) are used as navigation sensors in a class of small flying robots now undergoing development for potential use in such applications as exploration, search, and surveillance. The basic principles of these robots were described briefly in Insect-Inspired Flight Control for Small Flying Robots (NPO-30545), NASA Tech Briefs, Vol. 29, No. 1 (January 2005), page 61. To recapitulate from the cited prior article: The concept of optical flow can be defined, loosely, as the use of texture in images as a source of motion cues. The flight-control and navigation systems of these robots are inspired largely by the designs and functions of the vision systems and brains of insects, which have been demonstrated to utilize optical flow (as detected by their eyes and brains) resulting from their own motions in the environment. Optical flow has been shown to be very effective as a means of avoiding obstacles and controlling speeds and altitudes in robotic navigation. Prior systems used in experiments on navigating by means of optical flow have involved the use of panoramic optics, high-resolution image sensors, and programmable imagedata- processing computers
    • …
    corecore