19 research outputs found

    Characterization of Electronic Transport through Amorphous TiO_2 Produced by Atomic-Layer Deposition

    Get PDF
    Electrical transport in amorphous titanium dioxide (a-TiO_2) thin films, deposited by atomic layer deposition (ALD), and across heterojunctions of p+-Si|a-TiO_2|metal substrates that had various top metal contacts has been characterized by ac conductivity, temperature-dependent dc conductivity, space-charge-limited current spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy, and current density versus voltage (J–V) characteristics. Amorphous TiO_2 films were fabricated using either tetrakis(dimethylamido)-titanium with a substrate temperature of 150 °C or TiCl_4 with a substrate temperature of 50, 100, or 150 °C. EPR spectroscopy of the films showed that the Ti^(3+) concentration varied with the deposition conditions and increases in the concentration of Ti^(3+) in the films correlated with increases in film conductivity. Valence band spectra for the a-TiO_2 films exhibited a defect-state peak below the conduction band minimum (CBM) and increases in the intensity of this peak correlated with increases in the Ti^(3+) concentration measured by EPR as well as with increases in film conductivity. The temperature-dependent conduction data showed Arrhenius behavior at room temperature with an activation energy that decreased with decreasing temperature, suggesting that conduction did not occur primarily through either the valence or conduction bands. The data from all of the measurements are consistent with a Ti^(3+) defect-mediated transport mode involving a hopping mechanism with a defect density of 10^(19) cm^(–3), a 0.83 wide defect band centered 1.47 eV below the CBM, and a free-electron concentration of 10^(16) cm^(–3). The data are consistent with substantial room-temperature anodic conductivity resulting from the introduction of defect states during the ALD fabrication process as opposed to charge transport intrinsically associated with the conduction band of TiO_2

    Characterization of Electronic Transport through Amorphous TiO_2 Produced by Atomic-Layer Deposition

    Get PDF
    Electrical transport in amorphous titanium dioxide (a-TiO_2) thin films, deposited by atomic layer deposition (ALD), and across heterojunctions of p+-Si|a-TiO_2|metal substrates that had various top metal contacts has been characterized by ac conductivity, temperature-dependent dc conductivity, space-charge-limited current spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, X-ray photoelectron spectroscopy, and current density versus voltage (J–V) characteristics. Amorphous TiO_2 films were fabricated using either tetrakis(dimethylamido)-titanium with a substrate temperature of 150 °C or TiCl_4 with a substrate temperature of 50, 100, or 150 °C. EPR spectroscopy of the films showed that the Ti^(3+) concentration varied with the deposition conditions and increases in the concentration of Ti^(3+) in the films correlated with increases in film conductivity. Valence band spectra for the a-TiO_2 films exhibited a defect-state peak below the conduction band minimum (CBM) and increases in the intensity of this peak correlated with increases in the Ti^(3+) concentration measured by EPR as well as with increases in film conductivity. The temperature-dependent conduction data showed Arrhenius behavior at room temperature with an activation energy that decreased with decreasing temperature, suggesting that conduction did not occur primarily through either the valence or conduction bands. The data from all of the measurements are consistent with a Ti^(3+) defect-mediated transport mode involving a hopping mechanism with a defect density of 10^(19) cm^(–3), a 0.83 wide defect band centered 1.47 eV below the CBM, and a free-electron concentration of 10^(16) cm^(–3). The data are consistent with substantial room-temperature anodic conductivity resulting from the introduction of defect states during the ALD fabrication process as opposed to charge transport intrinsically associated with the conduction band of TiO_2

    The role of adsorbates in the green emission and conductivity of zinc oxide

    No full text
    Zinc oxide is a versatile semiconductor with an expansive range of applications including lighting, sensing and solar energy conversion. Two central phenomena coupled to its performance that remain heavily investigated are the origin of its sub-band-gap green emission and the nature of its conductivity. We report photoluminescence and dark conductivity measurements of zinc oxide nanoparticle films under various atmospheric conditions that demonstrate the vital role of adsorbates. We show that the UV emission and conductivity can be tuned reversibly by facilitating the adsorption of species that either donate or extract electrons from the conduction band. When the conductivity data are compared with photoluminescence spectra taken under the same ambient conditions, the green emission can be directly linked to surface superoxide formation, rather than surface hydroxylation or native defects such as oxygen vacancies. This demonstrates how and explains why the green emission can be controlled by surface reactivity and chemical environment

    Carrier Dynamics in Solution-Processed CuI as a P-Type Semiconductor : The Origin of Negative Photoconductivity

    No full text
    There is an urgent need for efficient solutionprocessable p-type semiconductors. Copper(I) iodide (CuI) has attracted attention as a potential candidate due to its good electrical properties and ease of preparation. However, its carrier dynamics still need to be better understood. Carrier dynamics after bandgap excitation yielded a convoluted signal of free carriers (positive signal) and a negative feature, which was also present when the material was excited with sub-bandgap excitation energies. This previously unseen feature was found to be dependent on measurement temperature and attributed to negative photoconductivity. The unexpected signal relates to the formation of polarons or strongly bound excitons. The possibility of coupling CuI to plasmonic sensitizers is also tested, yielding positive results. The outcomes mentioned above could have profound implications regarding the applicability of CuI in photocatalytic and photovoltaic systems and could also open a whole new range of possible applications

    Functional Role of Pyridinium during Aqueous Electrochemical Reduction of CO<sub>2</sub> on Pt(111)

    No full text
    Recent breakthroughs in electrochemical studies have reported aqueous CO<sub>2</sub> reduction to formic acid, formaldehyde, and methanol at low overpotentials (−0.58 V versus SCE), with a Pt working electrode in acidic pyridine (Pyr) solutions. We find that CO<sub>2</sub> is reduced by H atoms bound to the Pt surface that are transferred as hydrides to CO<sub>2</sub> in a proton-coupled hydride transfer (PCHT) mechanism activated by pyridinium (PyrH<sup>+</sup>), CO<sub>2</sub> + Pt–H + PyrH<sup>+</sup> + e<sup>–</sup> → Pyr + Pt + HCO<sub>2</sub>H. The surface-bound H atoms consumed by CO<sub>2</sub> reduction is replenished by the one-electron reduction of PyrH<sup>+</sup> through the proton-coupled electron transfer (PCET), PyrH<sup>+</sup> + Pt + e<sup>–</sup> → Pyr + Pt–H. Pyridinium is essential to establish a high concentration of Brønsted acid in contact with CO<sub>2</sub> and with the Pt surface, much higher than the concentration of free protons. These findings are particularly relevant to generate fuels with a carbon-neutral footprint

    Hydroxamate anchors for improved photoconversion in dye-sensitized solar cells

    No full text
    We present the first analysis of performance of hydroxamate linkers as compared to carboxylate and phosphonate groups when anchoring ruthenium-polypyridyl dyes to TiO2 surfaces in dye-sensitized solar cells (DSSCs). The study provides fundamental insight into structure/function relationships that are critical for cell performance. Our DSSCs have been produced by using newly synthesized dye molecules and characterized by combining measurements and simulations of experimental current density-voltage (J-V) characteristic curves. We show that the choice of anchoring group has a direct effect on the overall sunlight-to-electricity conversion efficiency (η), with hydroxamate anchors showing the best performance. Solar cells based on the pyridyl-hydroxamate complex exhibit higher efficiency since they suppress electron transfer from the photoanode to the electrolyte and have superior photoinjection characteristics. These findings suggest that hydroxamate anchoring groups should be particularly valuable in DSSCs and photocatalytic applications based on molecular adsorbates covalently bound to semiconductor surfaces. In contrast, analogous acetylacetonate anchors might undergo decomposition under similar conditions suggesting limited potential in future applications. © 2013 American Chemical Society

    Reduction of Systematic Uncertainty in DFT Redox Potentials of Transition-Metal Complexes

    No full text
    Reliable calculations of redox potentials could provide valuable insight into catalytic mechanisms of electrochemically active transition-metal complexes as well as guidelines for the design of new electrocatalysts. However, the correlation between theoretical and experimental data is often uncertain, since redox properties depend strongly on experimental conditions of electrochemical measurements, including the nature of the solvent, electrolyte, and working electrode. Here, we show that the use of internal references allows for quantitative theoretical predictions of redox potentials with standard deviations σ comparable to typical experimental errors of cyclic voltammetry measurements. Agreement for first-, second-, and third-row transition-metal complexes is demonstrated even at a rather modest level of density functional theory (σ = 64 mV for the UB3LYP/6-311G* level). This is shown for a series of benchmark redox couples, including ([MCp<sub>2</sub>]<sup>0/+</sup> (Cp = η<sup>5</sup>-cyclopentadienyl), [MCp*<sub>2</sub>]<sup>0/+</sup> (Cp* = η<sup>5</sup>-1,2,3,4,5-pentamethylcyclopentadienyl), [M­(bpy)<sub>3</sub>]<sup>2+/3+</sup> (bpy =2,2′-bipyridine), and [Ir­(acac)<sub>3</sub>]<sup>0/+</sup> (acac = acetylacetonate), with M = Fe, Co, Ni, Ru, Os, or Ir) in various nonaqueous solvents [acetonitrile (MeCN), dimethyl sulfoxide (DMSO), and dichloromethane (DCM)]

    Organometallic Ni Pincer Complexes for the Electrocatalytic Production of Hydrogen

    No full text
    Nonplatinum metals are needed to perform cost-effective water reduction electrocatalysis to enable technological implementation of a proposed hydrogen economy. We describe electrocatalytic proton reduction and H<sub>2</sub> production by two organometallic nickel complexes with tridentate pincer ligands. The kinetics of H<sub>2</sub> production from voltammetry is consistent with an overall third order rate law: the reaction is second order in acid and first order in catalyst. Hydrogen production with 90–95% Faradaic yields was confirmed by gas analysis, and UV–vis spectroscopy suggests that the ligand remains bound to the catalyst over the course of the reaction. A computational study provides mechanistic insights into the proposed catalytic cycle. Furthermore, two proposed intermediates in the proton reduction cycle were isolated in a representative system and show a catalytic response akin to the parent compound

    Organometallic Ni Pincer Complexes for the Electrocatalytic Production of Hydrogen

    No full text
    Nonplatinum metals are needed to perform cost-effective water reduction electrocatalysis to enable technological implementation of a proposed hydrogen economy. We describe electrocatalytic proton reduction and H<sub>2</sub> production by two organometallic nickel complexes with tridentate pincer ligands. The kinetics of H<sub>2</sub> production from voltammetry is consistent with an overall third order rate law: the reaction is second order in acid and first order in catalyst. Hydrogen production with 90–95% Faradaic yields was confirmed by gas analysis, and UV–vis spectroscopy suggests that the ligand remains bound to the catalyst over the course of the reaction. A computational study provides mechanistic insights into the proposed catalytic cycle. Furthermore, two proposed intermediates in the proton reduction cycle were isolated in a representative system and show a catalytic response akin to the parent compound
    corecore