127 research outputs found

    Long Distance Movements and Disjunct Spatial Use of Harbor Seals (Phoca Vitulina) in the Inland Waters of the Pacific Northwest

    Get PDF
    Background Worldwide, adult harbor seals (Phoca vitulina) typically limit their movements and activity toresult, the ecological impact of harbor seals is viewed as limited to relatively small spatial scales. Harbor seals in the Pacific Northwest are believed to remainsite, one of several contributing factors to the current stock designation. However, movement patterns within the region are not well understood because previous studies have used radio-telemetry, which has range limitations. Our objective was to use satellite-telemetry to determine the regional spatial scale of movements. Methodology Satellite tags were deployed on 20 adult seals (n=16 males and 4 females) from two rocky reefs and a mudflat-bay during April–May 2007. Standard filtering algorithms were used to remove outliers, resulting in an average (± SD) of 693 (±377) locations per seal over 110 (±32) days. A particle filter was implemented to interpolate locations temporally and decrease erroneous locations on land. Minimum over-water distances were calculated between filtered locations and each seal\u27s capture site to show movement of seals over time relative to their capture site, and we estimated utilization distributions from kernel density analysis to reflect spatial use. Eight males moved \u3e100 km from their capture site at least once, two of which traveled round trip to and from the Pacific coast, a total distance \u3e400 km. Disjunct spatial use patterns observed provide new insight into general harbor seal behavior. Conclusions/Significance Long-distance movements and disjunct spatial use of adult harbor seals have not been reported for the study region and are rare worldwide in such a large proportion of tagged individuals. Thus, the ecological influence of individual seals may reach farther than previously assumed

    Fish consumption by harbor seals (Phoca vitulina) in the San Juan Islands, Washington

    Get PDF
    The harbor seal (Phoca vitulina) is a large-bodied and abundant predator in the Salish Sea ecosystem, and its population has recovered since the 1970s after passage of the Marine Mammal Protection Act and the cessation of bounties. Little is known about how this large predator population may affect the recovery of fish stocks in the Salish Sea, where candidate marine protected areas are being proposed. We used a bioenergetics model to calculate baseline consumption rates in the San Juan Islands, Washington. Salmonids (Oncorhynchus spp.) and herring (Clupeidae) were the 2 most energetically important prey groups for biomass consumed by harbor seals. Estimated consumption of salmonids was 783 (±380 standard deviation [SD]) metric tons (t) in the breeding season and 675 (±388 SD t in the nonbreeding season. Estimated consumption of herring was 646 (±303 SD) t in the breeding season and 2151 (±706 SD) t in the nonbreeding season. Rockfish, a depressed fish stock currently in need of population recovery, composed one of the minor prey groups consumed by harbor seals (84 [±26 SD] t in the nonbreeding season). The variables of seal body mass and proportion of prey in seal diet explained >80% of the total variation in model outputs. Prey groups, such as rockfish, that are targeted for recovery may still be affected by even low levels of predation. This study highlights the importance of salmonids and herring for the seal population and provides a framework for refining consumption estimates and their confidence intervals with future data

    New insights into the diets of harbor seals (Phoca vitulina) in the Salish Sea revealed by analysis of fatty acid signatures

    Get PDF
    Harbor seals (Phoca fvitulina) are an abundant predator along the west coast of North America, and there is considerable interest in their diet composition, especially in regard to predation on valued fish stocks. Available informationon harbor seal diets, primarily derived from scat analysis, suggests that adult salmon (Oncorhynchus spp.), Pacific Herring (Clupea pallasii), and gadids predominate. Because diet assessments based on scat analysis may be biased, we investigated diet composition through quantitative analysis of fatty acid signatures. Blubber samples from 49 harbor seals captured in western North America from haul-outs within the area of the San Juan Islands and southern Strait of Georgia in the Salish Sea were analyzed for fatty acid composition, along with 269 fish and squid specimens representing 27 potential prey classes. Diet estimates varied spatially, demographically, and among individual harbor seals. Findings confirmed the prevalence of previously identified prey species in harbor seal diets, but other species also contributed significantly. In particular, Black (Sebastes melanops) and Yellowtail (S. flavidus) Rockfish were estimated to compose up to 50% of some individual seal diets. Specialization and high predation rates on Black and Yellowtail Rockfish by a subset of harbor seals may play a role in the population dynamics of these regional rockfish stocks that is greater than previously realized

    Haul-Out Behavior of Harbor Seals (Phoca vitulina) in Hood Canal, Washington

    Get PDF
    The goal of this study was to model haul-out behavior of harbor seals (Phoca vitulina) in the Hood Canal region of Washington State with respect to changes in physiological, environmental, and temporal covariates. Previous research has provided a solid understanding of seal haul-out behavior. Here, we expand on that work using a generalized linear mixed model (GLMM) with temporal autocorrelation and a large dataset. Our dataset included behavioral haul-out records from archival and VHF radio tag deployments on 25 individual seals representing 61,430 seal hours. A novel application for increased computational efficiency allowed us to examine this large dataset with a GLMM that appropriately accounts for temporal autocorellation. We found significant relationships with the covariates hour of day, day of year, minutes from high tide and year. Additionally, there was a significant effect of the interaction term hour of day : day of year. This interaction term demonstrated that seals are more likely to haul out during nighttime hours in August and September, but then switch to predominantly daylight haul-out patterns in October and November. We attribute this change in behavior to an effect of human disturbance levels. This study also examined a unique ecological event to determine the role of increased killer whale (Orcinus orca) predation on haul-out behavior. In 2003 and 2005 these harbor seals were exposed to unprecedented levels of killer whale predation and results show an overall increase in haul-out probability after exposure to killer whales. The outcome of this study will be integral to understanding any changes in population abundance as a result of increased killer whale predation

    Long Distance Movements and Disjunct Spatial Use of Harbor Seals (Phoca vitulina) in the Inland Waters of the Pacific Northwest

    Get PDF
    BACKGROUND: Worldwide, adult harbor seals (Phoca vitulina) typically limit their movements and activity to <50 km from their primary haul-out site. As a result, the ecological impact of harbor seals is viewed as limited to relatively small spatial scales. Harbor seals in the Pacific Northwest are believed to remain <30 km from their primary haul-out site, one of several contributing factors to the current stock designation. However, movement patterns within the region are not well understood because previous studies have used radio-telemetry, which has range limitations. Our objective was to use satellite-telemetry to determine the regional spatial scale of movements. METHODOLOGY/PRINCIPAL FINDINGS: Satellite tags were deployed on 20 adult seals (n=16 males and 4 females) from two rocky reefs and a mudflat-bay during April-May 2007. Standard filtering algorithms were used to remove outliers, resulting in an average (± SD) of 693 (± 377) locations per seal over 110 (± 32) days. A particle filter was implemented to interpolate locations temporally and decrease erroneous locations on land. Minimum over-water distances were calculated between filtered locations and each seal's capture site to show movement of seals over time relative to their capture site, and we estimated utilization distributions from kernel density analysis to reflect spatial use. Eight males moved >100 km from their capture site at least once, two of which traveled round trip to and from the Pacific coast, a total distance >400 km. Disjunct spatial use patterns observed provide new insight into general harbor seal behavior. CONCLUSIONS/SIGNIFICANCE: Long-distance movements and disjunct spatial use of adult harbor seals have not been reported for the study region and are rare worldwide in such a large proportion of tagged individuals. Thus, the ecological influence of individual seals may reach farther than previously assumed

    Sex and proximity to reproductive maturity influence the survival, final maturation, and blood physiology of Pacific salmon when exposed to high temperature during a simulated migration

    Full text link
    Some Pacific salmon populations have been experiencing increasingly warmer river temperatures during their once-in-a-lifetime spawning migration, which has been associated with en route and prespawn mortality. The mechanisms underlying such temperature-mediated mortality are poorly understood. Wild adult pink (Oncorhynchus gorbuscha) and sockeye (Oncorhynchus nerka) salmon were used in this study. The objectives were to investigate the effects of elevated water temperature on mortality, final maturation, and blood properties under controlled conditions that simulated a &quot;cool&quot; (13&deg;C) and &quot;warm&quot; (19&deg;C) freshwater spawning migration. After 10 d at 13&deg;C, observed mortality was 50%-80% in all groups, which suggested that there was likely some mortality associated with handling and confinement. Observed mortality after 10 d at 19&deg;C was higher, reaching &ge;98% in male pink salmon and female pink and sockeye salmon. Thus, male sockeye salmon were the most thermally tolerant (54% observed mortality). Model selection supported the temperature- and sex-specific mortality patterns. The pink salmon were closer to reproductive maturation and farther along the senescence trajectory than sockeye salmon, which likely influenced their survival and physiological responses throughout the experiment. Females of both species held at 19&deg;C had reduced plasma sex steroids compared with those held at 13&deg;C, and female pink salmon were less likely to become fully mature at 19&deg; than at 13&deg;C. Male and female sockeye salmon held at 19&deg;C had higher plasma chloride and osmolality than those held at 13&deg;C, indicative of a thermally related stress response. These findings suggest that sex differences and proximity to reproductive maturity must be considered when predicting thermal tolerance and the magnitude of en route and prespawn mortality for Pacific salmon

    Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions

    Full text link
    Seagrass ecosystems are significant carbon sinks, and their resident microbial communities ultimately determine the quantity and quality of carbon sequestered. However, environmental perturbations have been predicted to affect microbial-driven seagrass decomposition and subsequent carbon sequestration. Utilizing techniques including 16S-rDNA sequencing, solid-state NMR and microsensor profiling, we tested the hypothesis that elevated seawater temperatures and eutrophication enhance the microbial decomposition of seagrass leaf detritus and rhizome/root tissues. Nutrient additions had a negligible effect on seagrass decomposition, indicating an absence of nutrient limitation. Elevated temperatures caused a 19% higher biomass loss for aerobically decaying leaf detritus, coinciding with changes in bacterial community structure and enhanced lignocellulose degradation. Although, community shifts and lignocellulose degradation were also observed for rhizome/root decomposition, anaerobic decay was unaffected by temperature. These observations suggest that oxygen availability constrains the stimulatory effects of temperature increases on bacterial carbon remineralization, possibly through differential temperature effects on bacterial functional groups, including putative aerobic heterotrophs (e.g. Erythrobacteraceae, Hyphomicrobiaceae) and sulfate-reducers (e.g. Desulfobacteraceae). Consequently, under elevated seawater temperatures, carbon accumulation rates may diminish due to higher remineralization rates at the sediment surface. Nonetheless, the anoxic conditions ubiquitous to seagrass sediments can provide a degree of carbon protection under warming seawater temperatures

    Correction to: Emergence of knock-down resistance in the Anopheles gambiae complex in the Upper River Region, The Gambia, and its relationship with malaria infection in children.

    Get PDF
    Unfortunately, the original article [1] contained an error mistakenly carried forward by the Production department handling this article whereby some figures and their captions were interchanged. The correct figures (Figs. 1, 2, 3, 4, 5) and captions are presented in this erratum. The original article has also been updated to reflect this correction

    Competing Tradeoff between Increasing Marine Mammal Predation and Fisheries Harvest of Chinook Salmon

    Get PDF
    Many marine mammal predators, particularly pinnipeds, have increased in abundance in recent decades, generating new challenges for balancing human uses with recovery goals via ecosystem-based management. We used a spatio-temporal bioenergetics model of the Northeast Pacific Ocean to quantify how predation by three species of pinnipeds and killer whales (Orcinus orca) on Chinook salmon (Oncorhynchus tshawytscha) has changed since the 1970s along the west coast of North America, and compare these estimates to salmon fisheries. We find that from 1975 to 2015, biomass of Chinook salmon consumed by pinnipeds and killer whales increased from 6,100 to 15,200 metric tons (from 5 to 31.5 million individual salmon). Though there is variation across the regions in our model, overall, killer whales consume the largest biomass of Chinook salmon, but harbor seals (Phoca vitulina) consume the largest number of individuals. The decrease in adult Chinook salmon harvest from 1975–2015 was 16,400 to 9,600 metric tons. Thus, Chinook salmon removals (harvest + consumption) increased in the past 40 years despite catch reductions by fisheries, due to consumption by recovering pinnipeds and endangered killer whales. Long-term management strategies for Chinook salmon will need to consider potential conflicts between rebounding predators or endangered predators and prey

    Meraculous: De Novo Genome Assembly with Short Paired-End Reads

    Get PDF
    We describe a new algorithm, meraculous, for whole genome assembly of deep paired-end short reads, and apply it to the assembly of a dataset of paired 75-bp Illumina reads derived from the 15.4 megabase genome of the haploid yeast Pichia stipitis. More than 95% of the genome is recovered, with no errors; half the assembled sequence is in contigs longer than 101 kilobases and in scaffolds longer than 269 kilobases. Incorporating fosmid ends recovers entire chromosomes. Meraculous relies on an efficient and conservative traversal of the subgraph of the k-mer (deBruijn) graph of oligonucleotides with unique high quality extensions in the dataset, avoiding an explicit error correction step as used in other short-read assemblers. A novel memory-efficient hashing scheme is introduced. The resulting contigs are ordered and oriented using paired reads separated by ∼280 bp or ∼3.2 kbp, and many gaps between contigs can be closed using paired-end placements. Practical issues with the dataset are described, and prospects for assembling larger genomes are discussed
    • …
    corecore