164 research outputs found

    Experimental and theoretical study of the gas–water two phase flow through a conductance multiphase Venturi meter in vertical annular (wet gas) flow

    Get PDF
    Annular gas–liquid two phase flow widely occurs in nuclear industry. Various combinations of techniques have been employed in annular gas–liquid two phase flows to measure the flow parameters (e.g. liquid film thickness, gas volume fraction and the phase flow rates). One of the most useful techniques which has proven attractive for many multiphase flow applications is the electrical conductance technique. This paper presents an advanced conductance multiphase Venturi meter (CMVM) which is capable of measuring the gas volume fractions at the inlet and the throat of the Venturi. A new model was investigated to measure the gas flow rate. This model is based on the measurement of the gas volume fractions at the inlet and the throat of the Venturi meter using a conductance technique rather than relying on prior knowledge of the mass flow quality x. We measure conductance using two ring electrodes flush with the inner surface of the Venturi throat and two ring electrodes flush with the inner surface of the Venturi inlet. The basic operation of the electrical conductance technique in a multiphase flow is that the conductance of the mixture depends on the gas volume fraction in the water. An electronic circuit was built and calibrated to give a dc voltage output which is proportional to the conductance of the mixture which can then be related to the water film thickness in annular flow (and hence to the gas volume fraction). It was inferred from the experimental results that the minimum average percentage error of the predicted gas mass flow rates (i.e. −0.0428%) can be achieved at the optimum gas discharge coefficient of 0.932

    Scaling tests of the improved Kogut-Susskind quark action

    Get PDF
    Improved lattice actions for Kogut-Susskind quarks have been shown to improve rotational symmetry and flavor symmetry. In this work we find improved scaling behavior of the rho and nucleon masses expressed in units of a length scale obtained from the static quark potential, and better behavior of the Dirac operator in instanton backgrounds.Comment: 4 pages, 4 figures, Revte

    Differential hormone-dependent transcriptional activation and -repression by naturally occurring human glucocorticoid receptor variants

    Get PDF
    The molecular mechanisms underlying primary glucocorticoid resistance or hypersensitivity are not well understood. Using transfected COS-1 cells as a model system, we studied gene regulation by naturally occurring mutants of the glucocorticoid receptor (GR) with single-point mutations in the regions encoding the ligand-binding domain or the N-terminal domain reflecting different phenotypic expression. We analyzed the capacity of these GR variants to regulate transcription from different promoters, either by binding directly to positive or negative glucocorticoid-response elements on the DNA or by interfering with protein-protein interactions. Decreased dexamethasone (DEX) binding to GR variants carrying mutations in the ligand-binding domain correlated well with decreased capacity to activate transcription from the mouse mammary tumor virus (MMTV) promoter. One variant, D641V, which suboptimally activated MMTV promoter-mediated transcription, repressed a PRL promoter element containing a negative glucocorticoid-response element with wild type activity. DEX-induced repression of transcription from elements of the intercellular adhesion molecule-1 promoter via nuclear factor-kappaB by the D641V variant was even more efficient compared with the wild type GR. We observed a general DEX-responsive AP-1-mediated transcriptional repression of the collagenase-1 promoter, even when receptor variants did not activate transcription from the MMTV promoter. Our findings indicate that different point mutations in the GR can affect separate pathways of gene regulation in a differential fashion, which can explain the various phenotypes observed

    Effect of Semicore Orbitals on the Electronic Band Gaps of Si, Ge, and GaAs within the GW Approximation

    Full text link
    We study the effect of semicore states on the self-energy corrections and electronic energy gaps of silicon, germanium and GaAs. Self-energy effects are computed within the GW approach, and electronic states are expanded in a plane-wave basis. For these materials, we generate {\it ab initio} pseudopotentials treating as valence states the outermost two shells of atomic orbitals, rather than only the outermost valence shell as in traditional pseudopotential calculations. The resulting direct and indirect energy gaps are compared with experimental measurements and with previous calculations based on pseudopotential and ``all-electron'' approaches. Our results show that, contrary to recent claims, self-energy effects due to semicore states on the band gaps can be well accounted for in the standard valence-only pseudopotential formalism.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Two-Flavor Staggered Fermion Thermodynamics at N_t = 12

    Get PDF
    We present results of an ongoing study of the nature of the high temperature crossover in QCD with two light fermion flavors. These results are obtained with the conventional staggered fermion action at the smallest lattice spacing to date---approximately 0.1 fm. Of particular interest are a study of the temperature of the crossover a determination of the induced baryon charge and baryon susceptibility, the scalar susceptibility, and the chiral order parameter, used to test models of critical behavior associated with chiral symmetry restoration. From our new data and published results for N_t = 4, 6, and 8, we determine the QCD magnetic equation of state from the chiral order parameter using O(4) and mean field critical exponents and compare it with the corresponding equation of state obtained from an O(4) spin model and mean field theory. We also present a scaling analysis of the Polyakov loop, suggesting a temperature dependent ``constituent quark free energy.''Comment: LaTeX 25 pages, 15 Postscript figure

    Lattice calculation of 1−+1^{-+} hybrid mesons with improved Kogut-Susskind fermions

    Get PDF
    We report on a lattice determination of the mass of the exotic 1−+1^{-+} hybrid meson using an improved Kogut-Susskind action. Results from both quenched and dynamical quark simulations are presented. We also compare with earlier results using Wilson quarks at heavier quark masses. The results on lattices with three flavors of dynamical quarks show effects of sea quarks on the hybrid propagators which probably result from coupling to two meson states. We extrapolate the quenched results to the physical light quark mass to allow comparison with experimental candidates for the 1−+1^{-+} hybrid meson. The lattice result remains somewhat heavier than the experimental result, although it may be consistent with the π1(1600)\pi_1(1600).Comment: 24 pages, 12 figures. Replaced to match published versio

    Lattice Calculation of Heavy-Light Decay Constants with Two Flavors of Dynamical Quarks

    Get PDF
    We present results for fBf_B, fBsf_{B_s}, fDf_D, fDsf_{D_s} and their ratios in the presence of two flavors of light sea quarks (Nf=2N_f=2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical uu, dd masses; that is, the central values are "partially quenched." A calculation using "fat-link clover" valence fermions is also discussed but is not included in our final results. We find, for example, fB=190(7)(−17+24)(−2+11)(−0+8)f_B = 190 (7) (^{+24}_{-17}) (^{+11}_{-2}) (^{+8}_{-0}) MeV, fBs/fB=1.16(1)(2)(2)(−0+4)f_{B_s}/f_B = 1.16 (1) (2) (2) (^{+4}_{-0}), fDs=241(5)(−26+27)(−4+9)(−0+5)f_{D_s} = 241 (5) (^{+27}_{-26}) (^{+9}_{-4}) (^{+5}_{-0}) MeV, and fB/fDs=0.79(2)(−4+5)(3)(−0+5)f_{B}/f_{D_s} = 0.79 (2) (^{+5}_{-4}) (3) (^{+5}_{-0}), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched Nf=2N_f=2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,du,d quark masses are not very light and chiral log effects may not be fully under control.Comment: Revised version includes an attempt to estimate the effects of chiral logarithms at small quark mass; central values are unchanged but one more systematic error has been added. Sections III E and V D are completely new; some changes for clarity have also been made elsewhere. 82 pages; 32 figure
    • 

    corecore