3,802 research outputs found

    Layered Model for Radiation-Induced Chemical Evolution of Icy Surface Composition on Kuiper Belt and Oort Cloud Bodies

    Get PDF
    The diversity of albedos and surface colors on observed Kuiper Belt and Inner Oort Cloud objects remains to be explained in terms of competition between primordial intrinsic versus exogenic drivers of surface and near-surface evolution. Earlier models have attempted without success to attribute this diversity to the relations between surface radiolysis from cosmic ray irradiation and gardening by meteoritic impacts. A more flexible approach considers the different depth-dependent radiation profiles produced by low-energy plasma, suprathermal, and maximally penetrating charged particles of the heliospheric and local interstellar radiation environments. Generally red objects of the dynamically cold (low inclination, circular orbit) Classical Kuiper Belt might be accounted for from erosive effects of plasma ions and reddening effects of high energy cosmic ray ions, while suprathermal keV-MeV ions could alternatively produce more color neutral surfaces. The deepest layer of more pristine ice can be brought to the surface from meter to kilometer depths by larger impact events and potentially by cryovolcanic activity. The bright surfaces of some larger objects, e.g. Eris, suggest ongoing resurfacing activity. Interactions of surface irradiation, resultant chemical oxidation, and near-surface cryogenic fluid reservoirs have been proposed to account for Enceladus cryovolcanism and may have further applications to other icy irradiated bodies. The diversity of causative processes must be understood to account for observationally apparent diversities of the object surfaces

    Heliosheath Space Environment Interactions with Icy Bodies in the Outermost Solar System

    Get PDF
    The Voyager 1 and 2 spacecraft are exploring the space environment of the outermost solar system at the same time that earth-based astronomy continues to discover new icy bodies, one larger than Pluto, in the transitional region outward from the Classical Kuiper Belt to the Inner Oort Cloud. Some of the Scattered Disk Objects in this region periodically pass through the heliosheath, entered by Voyager 1 in Dec. 2004 and later expected to be reached by Voyager 2, and out even beyond the heliopause into the Very Local Interstellar Medium. The less energetic heliosheath ions, important for implantation and sputtering processes, are abundant near and beyond the termination shock inner boundary, but the source region of the more penetrating anomalous cosmic ray component has not yet been found. Advantageous for modeling of icy body interactions, the measured heliosheath flux spectra are relatively more stable within this new regime of isotropic compressional magnetic turbulence than in the upstream heliospheric environment. The deepest interactions and resultant radiation-induced chemistry arise from the inwardly diffusing component of the galactic cosmic ray ions with significant intensity modulation also arising in the heliosheath beyond Voyager 1. Surface gardening by high-velocity impacts of smaller bodies (e.g., fragments of previous KBO collisions) and dust is a further space weathering process setting the time scales for long term exposure of different regolith layers to the ion irradiation. Sputtering and ionization of impact ejecta grains may provide a substantial feedback of pickup ions for multiple cycles of heliosheath acceleration and icy body interaction. Thus the space weathering interactions are potentially of interest not only for effects on sensible surface composition of the icy bodies but also for evolution of the heliosheath plasma energetic ion, and neutral emission environment

    Self-Doping of Gold Chains on Silicon: A New Structural Model for Si(111)5x2-Au

    Full text link
    A new structural model for the Si(111)5x2-Au reconstruction is proposed and analyzed using first-principles calculations. The basic model consists of a "double honeycomb chain" decorated by Si adatoms. The 5x1 periodicity of the honeycomb chains is doubled by the presence of a half-occupied row of Si atoms that partially rebonds the chains. Additional adatoms supply electrons that dope the parent band structure and stabilize the period doubling; the optimal doping corresponds to one adatom per four 5x2 cells, in agreement with experiment. All the main features observed in scanning tunneling microscopy and photoemission are well reproduced.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Lett. (preprint with high quality figures available at http://cst-www.nrl.navy.mil/~erwin/papers/ausi111

    Computer simulation of neutral drift among limbal epithelial stem cells of mosaic mice

    Get PDF
    Acknowledgements We thank Graham West for writing the software that made this study possible and Ronnie Grant for help with some of the figures. Disclosure of potential conflicts of interest The authors indicate no potential conflicts of interest. Funding information This work was supported by the UK Biotechnology and Biological Sciences Research Council (grants BB/J015172/1 and BB/J015237/1).Peer reviewedPublisher PD

    Planting the Seeds: Orchestral Music Education as a Context for Fostering Growth Mindsets

    Get PDF
    Growth mindset is an important aspect of children\u27s socioemotional development and is subject to change due to environmental influence. Orchestral music education may function as a fertile context in which to promote growth mindset; however, this education is not widely available to children facing economic hardship. This study examined whether participation in a program of orchestral music education was associated with higher levels of overall growth mindset and greater change in levels of musical growth mindset among children placed at risk by poverty. After at least 2 years of orchestral participation, students reported significantly higher levels of overall growth mindset than their peers; participating students also reported statistically significant increases in musical growth mindset regardless of the number of years that they were enrolled in orchestral music education. These findings have implications for future research into specific pedagogical practices that may promote growth mindset in the context of orchestral music education and more generally for future studies of the extra-musical benefits of high-quality music education

    Radiolytic Gas-Driven Cryovolcanism in the Outer Solar System

    Get PDF
    Water ices in surface crusts of Europa, Enceladus, Saturn's main rings, and Kuiper Belt Objects can become heavily oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. Oxidant accumulations and gas production are manifested in part through observed H2O2 on Europa. tentatively also on Enceladus, and found elsewhere in gaseous or condensed phases at moons and rings of Jupiter and Saturn. On subsequent chemical contact in sub-surface environments with significant concentrations of primordially abundant reductants such as NH3 and CH4, oxidants of radiolytic origin can react exothermically to power gas-driven cryovolcanism. The gas-piston effect enormously amplifies the mass flow output in the case of gas formation at basal thermal margins of incompressible fluid reservoirs. Surface irradiation, H2O2 production, NH3 oxidation, and resultant heat, gas, and gas-driven mass flow rates are computed in the fluid reservoir case for selected bodies. At Enceladus the oxidant power inputs are comparable to limits on nonthermal kinetic power for the south polar plumes. Total heat output and plume gas abundance may be accounted for at Enceladus if plume activity is cyclic in high and low "Old Faithful" phases, so that oxidants can accumulate during low activity phases. Interior upwelling of primordially abundant NH3 and CH4 hydrates is assumed to resupply the reductant fuels. Much lower irradiation fluxes on Kuiper Belt Objects require correspondingly larger times for accumulation of oxidants to produce comparable resurfacing, but brightness and surface composition of some objects suggest that such activity may be ongoing

    Inferring causal molecular networks: empirical assessment through a community-based effort

    Get PDF
    It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense
    corecore