1,454 research outputs found

    Extended Quantum XOR Gate in Terms of Two-Spin Interactions

    Get PDF
    Considerations of feasibility of quantum computing lead to the study of multispin quantum gates in which the input and output two-state systems (spins) are not identical. We provide a general discussion of this approach and then propose an explicit two-spin interaction Hamiltonian which accomplishes the quantum XOR gate function for a system of three spins: two input and one output.Comment: 15 pages in plain TeX with 1 Postscript figur

    The Rotation Temperature of Methanol in Comet 103P/Hartley 2

    Get PDF
    Considered to be relics from Solar System formation, comets may provide the vital information connecting Solar Nebula and its parent molecular cloud. Study of chemical and physical properties of comets is thus important for our better understanding of the formation of Solar System. In addition, observing organic molecules in comets may provide clues fundamental to our knowledge on the formation of prebiotically important organic molecules in interstellar space, hence, may shed light on the origin of life on the early Earth. Comet 103PIHartley 2 was fIrst discovered in 1986 and had gone through apparitions in 1991, 1997, and 2004 with an orbital period of about 6 years, before its latest return in 2010. 2010 was also a special year for Comet 103PIHartley 2 because of the NASA EPOXI comet-flyby mission

    Iterative precision measurement of branching ratios applied to 5P States in 88Sr+

    Get PDF
    We report and demonstrate a method for measuring the branching ratios of dipole transitions of trapped atomic ions by performing nested sequences of population inversions. This scheme is broadly applicable to species with metastable lambda systems and can be generalized to find the branching of any state to lowest states. It does not use ultrafast pulsed or narrow linewidth lasers and is insensitive to experimental variables such as laser and magnetic field noise as well as ion heating. To demonstrate its effectiveness, we make the most accurate measurements thus far of the branching ratios of both 5P[subscript 1/2] and 5P[subscript 3/2] states in [superscript 88]Sr[superscript +] with sub-1% uncertainties. We measure 17.175(27) for the 5P[subscript 1/2]–5S[subscript 1/2] branching ratio, 15.845(71) for 5P[subscript 3/2]–5S[subscript 1/2], and 0.056 09(21) for 5P[subscript 3/2]–4D[subscript 5/2]. These values represent the first precision measurement for 5P[subscript 3/2]–4D[subscript 5/2], as well as ten- and thirty-fold improvements in precision respectively for 5P[subscript 1/2]–5S[subscript 1/2] and 5P[subscript 3/2]–5S[subscript 1/2] over the best previous experimental values.National Science Foundation (U.S.). Center for Ultracold AtomsUnited States. Intelligence Advanced Research Projects Activity. Multi-Qubit Coherent Operation

    Behavioral Effects of Congenital Ventromedial Prefrontal Cortex Malformation

    Get PDF
    Background: A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC) has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation: B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions: The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process

    Radio Observations of Organics in Comets

    Get PDF
    A major observational challenge in cometary science is to quantify the extent to which chemical compounds can be linked to either interstellar or nebular chemistry. Recently, there have been complimentary observations from multiple facilities to try to unravel the chemical complexity of comets and their origins. Incorporating results from various techniques can gain further insight into the abundances, production rates, distributions, and formation mechanisms of molecules in these objects [I]. Such studies have provided great detail towards molecules with a-typical chemistries, such as H2CO [2]. We report multiwavelength spectral observations of comets from two dynamical families including the JFC 103P/Hartley 2 and a long period comet C/2009 PI (Garradd) with the Arizona Radio Observatory's SMT and 12-m telescopes, as well as the NRAO Greenbank telescope, and the James Clerk Maxwell Telescope. Multiple parent volatiles (e.g. HCN, CH30H, CO) as well as daughter products (e.g, CS and 01-1) have been detected in these objects. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition. Previous work has revealed a range of abundances of parent species (from "organics-poor" to "organics-rich") with respect to water among comets [3,4,5], however the statistics are not well constrained

    Centimeter, Millimeter, and Submillimeter Observations of Comet l03P/Hartley 2

    Get PDF
    The close approach (0.12 AU) of Comet 103P/Hartley 2 to the Earth only 8 days prior to perihelion provided a unique opportunity to probe the chemical composition of this object. Additionally, supporting data was acquired during the EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation) flyby mission [1], which provided high resolution infrared spectra and images. Observations were conducted from four facilities, contributing to the large ground-based consortium organized in support of the EPOXI mission [2]. The Arizona Radio Observatory's 12m telescope, Kitt Peak, AZ, and Submillimeter telescope, Mt. Graham, AZ, as well as the James Clerk Maxwell Telescope, Mauna Kea, HI and the Greenbank 100m telescope, Greenbank, WV, were employed for this study covering 20 cm, 3 cm, and 0.8-3 mm. Data were obtained, collectively, from 12 October 2010 to 5 November 2010 [3]. HCN, CH3OH, H2CO, HNC, OH, and CS were detected, and upper limits on the abundance of H2S, SO2, c-C3H2, and deuterated isotopologues of HCN, H2CO, and H2O were measured. Upper limits on the D/H ratio derived from DCN gave D/H less than 0.01[3]. Detailed analysis of these data will help constrain the temperature, abundances, variance or periodicity of a given species, and can be compared to results from other comets, as well as support the data obtained from the EPOXI mission. The full analysis and comparison will be presented

    A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing, Part II: Additive Manufacturing and Characterization of Polymer Composites

    Get PDF
    This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program
    corecore