98 research outputs found

    A New Model of the Oceanic Evaporation Duct

    Get PDF

    A meta-analysis of point-of-care laboratory tests in the diagnosis of novel 2009 swine-lineage pandemic influenza A (H1N1)

    Get PDF
    Abstract This paper reviews 14 published studies describing performance characteristics, including sensitivity and specificity, of commercially available rapid, point-of-care (POC) influenza tests in patients affected by an outbreak of a novel swine-related influenza A (H1N1) that was declared a pandemic in 2009. Although these POC tests were not intended to be specific for this pandemic influenza strain, the nonspecialized skills required and the timeliness of results make these POC tests potentially valuable for clinical and public health use. Pooled sensitivity and specificity for the POC tests studied were 68% and 81%, respectively, but published values were not homogeneous with sensitivities and specificities ranging from 10% to 88% and 51% to 100%, respectively. Pooled positive and negative likelihood ratios were 5.94 and 0.42, respectively. These results support current recommendations for use of rapid POC tests when H1N1 is suspected, recognizing that positive results are more reliable than negative results in determining infection, especially when disease prevalence is high

    Development of a protocol to obtain the composition of terrigenous detritus in marine sediments -a pilot study from International Ocean Discovery Program Expedition 361

    Get PDF
    The geochemical and isotopic composition of terrigenous clays from marine sediments can provide important information on the sources and pathways of sediments. International Ocean Discovery Program Expedition 361 drilled sites along the eastern margin of southern Africa that potentially provide archives of rainfall on the continent as well as dispersal in the Agulhas Current. We used standard methods to remove carbonate and ferromanganese oxides and Stokes settling to isolate the clay fractions. In comparison to most previous studies that aimed to extract the detrital signal from marine sediments, we additionally applied a cation exchange wash using CsCl as a final step in the sample preparation. The motivation behind the extra step, not frequently applied, is to remove ions that are gained on the clay surface due to adsorption of authigenic trace metals in the ocean or during the leaching procedure. Either would alter the composition of the detrital fraction if no cation exchange was applied. Moreover, using CsCl will provide an additional measure of the cation exchange capacity (CEC) of the samples. However, no study so far has evaluated the potential and the limitations of such a targeted protocol for marine sediments. Here, we explore the effects of removing and replacing adsorbed cations on the clay surfaces with Cs+, conducting measurements of the chemical compositions, and radiogenic isotopes on a set of eight clay sample pairs. Both sets of samples underwent the same full leaching procedure except that one batch was treated with a final CsCl wash step. In this study, organic matter was not leached because sediments at IODP Site U1478 have relatively low organic content. However, in general, we recommend including that step in the leaching procedure. As expected, significant portions of elements with high concentrations in seawater were replaced by Cs+ (2SD 2.8%.) from the wash, including 75% of the sodium and approximately 25% of the calcium, 10% of the magnesium, and 8% of the potassium. Trace metals such as Sr and Nd, whose isotopes are used for provenance studies, are also found to be in lower concentrations in the samples after the exchange wash. The exchange wash affected the radiogenic isotope compositions of the samples. Neodymium isotope ratios are slightly less radiogenic in all the washed samples. Strontium and Pb isotopes showed significant deviations to either more or less radiogenic values in different samples. The radiogenic isotopes from the CsCl-treated fractions gave more consistent correlations with each other, and we suggest this treatment offers a superior measure of provenance. Although we observed changes in the isotope ratios, the general trend in the data and hence the overall provenance interpretations remained the same. However, the chemical compositions are significantly different. We conclude that a leaching protocol including a cation exchange wash (e.g. CsCl) is useful for revealing the terrestrial fingerprint. CEC could, with further calibration efforts, be useful as a terrestrial chemical weathering proxy

    Data-driven approach for creating synthetic electronic medical records

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>New algorithms for disease outbreak detection are being developed to take advantage of full electronic medical records (EMRs) that contain a wealth of patient information. However, due to privacy concerns, even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was developed.</p> <p>Methods</p> <p>This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak illness of interest (tularemia) and for background records. The method developed has three major steps: 1) synthetic patient identity and basic information generation; 2) identification of care patterns that the synthetic patients would receive based on the information present in real EMR data for similar health problems; 3) adaptation of these care patterns to the synthetic patient population.</p> <p>Results</p> <p>We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over 3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer than 3% of these background patient EMRs and the errors were subsequently rectified.</p> <p>Conclusions</p> <p>A data-driven method was developed for generating fully synthetic EMRs. The method is general and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and results, clinical activity, prescription orders). The pilot synthetic outbreak records were for tularemia but our approach may be adapted to other infectious diseases. The pilot synthetic background records were in the 4-11 year old age group. The adaptations that must be made to the algorithms to produce synthetic background EMRs for other age groups are indicated.</p

    Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group

    Get PDF
    BACKGROUND: The District of Columbia (DC) Department of Health, under a grant from the US Centers for Disease Control and Prevention, established an Environmental Public Health Tracking Program. As part of this program, the goals of this contextual pilot study are to quantify short-term associations between daily pediatric emergency department (ED) visits and admissions for asthma exacerbations with ozone and particulate concentrations, and broader associations with socio-economic status and age group. METHODS: Data included daily counts of de-identified asthma-related pediatric ED visits for DC residents and daily ozone and particulate concentrations during 2001–2004. Daily temperature, mold, and pollen measurements were also obtained. After a cubic spline was applied to control for long-term seasonal trends in the ED data, a Poisson regression analysis was applied to the time series of daily counts for selected age groups. RESULTS: Associations between pediatric asthma ED visits and outdoor ozone concentrations were significant and strongest for the 5–12 year-old age group, for which a 0.01-ppm increase in ozone concentration indicated a mean 3.2% increase in daily ED visits and a mean 8.3% increase in daily ED admissions. However, the 1–4 yr old age group had the highest rate of asthma-related ED visits. For 1–17 yr olds, the rates of both asthma-related ED visits and admissions increased logarithmically with the percentage of children living below the poverty threshold, slowing when this percentage exceeded 30%. CONCLUSION: Significant associations were found between ozone concentrations and asthma-related ED visits, especially for 5–12 year olds. The result that the most significant ozone associations were not seen in the age group (1–4 yrs) with the highest rate of asthma-related ED visits may be related to the clinical difficulty in accurately diagnosing asthma among this age group. We observed real increases in relative risk of asthma ED visits for children living in higher poverty zip codes versus other zip codes, as well as similar logarithmic relationships for visits and admissions, which implies ED over-utilization may not be a factor. These results could suggest designs for future epidemiological studies that include more information on individual exposures and other risk factors

    Intraspecific Body Size Frequency Distributions of Insects

    Get PDF
    Although interspecific body size frequency distributions are well documented for many taxa, including the insects, intraspecific body size frequency distributions (IaBSFDs) are more poorly known, and their variation among mass-based and linear estimates of size has not been widely explored. Here we provide IaBSFDs for 16 species of insects based on both mass and linear estimates and large sample sizes (n≥100). In addition, we review the published IaBSFDs for insects, though doing so is complicated by their under-emphasis in the literature. The form of IaBSFDs can differ substantially between mass-based and linear measures. Nonetheless, in non-social insects they tend to be normally distributed (18 of 27 species) or in fewer instances positively skewed. Negatively skewed distributions are infrequently reported and log transformation readily removes the positive skew. Sexual size dimorphism does not generally cause bimodality in IaBSFDs. The available information on IaBSFDs in the social insects suggests that these distributions are usually positively skewed or bimodal (24 of 30 species). However, only c. 15% of ant genera are polymorphic, suggesting that normal distributions are probably more common, but less frequently investigated. Although only 57 species, representing seven of the 29 orders of insects, have been considered here, it appears that whilst IaBSFDs are usually normal, other distribution shapes can be found in several species, though most notably among the social insects. By contrast, the interspecific body size frequency distribution is typically right-skewed in insects and in most other taxa

    Correction for Johansson et al., An open challenge to advance probabilistic forecasting for dengue epidemics.

    Get PDF
    Correction for “An open challenge to advance probabilistic forecasting for dengue epidemics,” by Michael A. Johansson, Karyn M. Apfeldorf, Scott Dobson, Jason Devita, Anna L. Buczak, Benjamin Baugher, Linda J. Moniz, Thomas Bagley, Steven M. Babin, Erhan Guven, Teresa K. Yamana, Jeffrey Shaman, Terry Moschou, Nick Lothian, Aaron Lane, Grant Osborne, Gao Jiang, Logan C. Brooks, David C. Farrow, Sangwon Hyun, Ryan J. Tibshirani, Roni Rosenfeld, Justin Lessler, Nicholas G. Reich, Derek A. T. Cummings, Stephen A. Lauer, Sean M. Moore, Hannah E. Clapham, Rachel Lowe, Trevor C. Bailey, Markel García-Díez, Marilia Sá Carvalho, Xavier Rodó, Tridip Sardar, Richard Paul, Evan L. Ray, Krzysztof Sakrejda, Alexandria C. Brown, Xi Meng, Osonde Osoba, Raffaele Vardavas, David Manheim, Melinda Moore, Dhananjai M. Rao, Travis C. Porco, Sarah Ackley, Fengchen Liu, Lee Worden, Matteo Convertino, Yang Liu, Abraham Reddy, Eloy Ortiz, Jorge Rivero, Humberto Brito, Alicia Juarrero, Leah R. Johnson, Robert B. Gramacy, Jeremy M. Cohen, Erin A. Mordecai, Courtney C. Murdock, Jason R. Rohr, Sadie J. Ryan, Anna M. Stewart-Ibarra, Daniel P. Weikel, Antarpreet Jutla, Rakibul Khan, Marissa Poultney, Rita R. Colwell, Brenda Rivera-García, Christopher M. Barker, Jesse E. Bell, Matthew Biggerstaff, David Swerdlow, Luis Mier-y-Teran-Romero, Brett M. Forshey, Juli Trtanj, Jason Asher, Matt Clay, Harold S. Margolis, Andrew M. Hebbeler, Dylan George, and Jean-Paul Chretien, which was first published November 11, 2019; 10.1073/pnas.1909865116. The authors note that the affiliation for Xavier Rodó should instead appear as Catalan Institution for Research and Advanced Studies (ICREA) and Climate and Health Program, Barcelona Institute for Global Health (ISGlobal). The corrected author and affiliation lines appear below. The online version has been corrected

    An open challenge to advance probabilistic forecasting for dengue epidemics.

    Get PDF
    A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico. Forecast skill was highly variable across teams and targets. While numerous forecasts showed high skill for midseason situational awareness, early season skill was low, and skill was generally lowest for high incidence seasons, those for which forecasts would be most valuable. A comparison of modeling approaches revealed that average forecast skill was lower for models including biologically meaningful data and mechanisms and that both multimodel and multiteam ensemble forecasts consistently outperformed individual model forecasts. Leveraging these insights, data, and the forecasting framework will be critical to improve forecast skill and the application of forecasts in real time for epidemic preparedness and response. Moreover, key components of this project-integration with public health needs, a common forecasting framework, shared and standardized data, and open participation-can help advance infectious disease forecasting beyond dengue
    corecore