138 research outputs found

    Modeling Cell-to-Cell Communication Networks Using Response-Time Distributions.

    Get PDF
    Cell-to-cell communication networks have critical roles in coordinating diverse organismal processes, such as tissue development or immune cell response. However, compared with intracellular signal transduction networks, the function and engineering principles of cell-to-cell communication networks are far less understood. Major complications include: cells are themselves regulated by complex intracellular signaling networks; individual cells are heterogeneous; and output of any one cell can recursively become an additional input signal to other cells. Here, we make use of a framework that treats intracellular signal transduction networks as "black boxes" with characterized input-to-output response relationships. We study simple cell-to-cell communication circuit motifs and find conditions that generate bimodal responses in time, as well as mechanisms for independently controlling synchronization and delay of cell-population responses. We apply our modeling approach to explain otherwise puzzling data on cytokine secretion onset times in T cells. Our approach can be used to predict communication network structure using experimentally accessible input-to-output measurements and without detailed knowledge of intermediate steps

    Cellular Heterogeneity: Do Differences Make a Difference?

    Get PDF
    A central challenge of biology is to understand how individual cells process information and respond to perturbations. Much of our knowledge is based on ensemble measurements. However, cell-to-cell differences are always present to some degree in any cell population, and the ensemble behaviors of a population may not represent the behaviors of any individual cell. Here, we discuss examples of when heterogeneity cannot be ignored and describe practical strategies for analyzing and interpreting cellular heterogeneity

    Only Two Ways to Achieve Perfection

    Get PDF
    The functional repertoire of a network is determined by its topology. Ma et al. (2009) analyze enzyme networks with three nodes and take a reverse-engineering approach to ask how many core network topologies can establish perfect adaptation, the ability to reset after perturbation. Surprisingly, the answer is just two

    The Developmental Rules of Neural Superposition in Drosophila

    Get PDF
    SummaryComplicated neuronal circuits can be genetically encoded, but the underlying developmental algorithms remain largely unknown. Here, we describe a developmental algorithm for the specification of synaptic partner cells through axonal sorting in the Drosophila visual map. Our approach combines intravital imaging of growth cone dynamics in developing brains of intact pupae and data-driven computational modeling. These analyses suggest that three simple rules are sufficient to generate the seemingly complex neural superposition wiring of the fly visual map without an elaborate molecular matchmaking code. Our computational model explains robust and precise wiring in a crowded brain region despite extensive growth cone overlaps and provides a framework for matching molecular mechanisms with the rules they execute. Finally, ordered geometric axon terminal arrangements that are not required for neural superposition are a side product of the developmental algorithm, thus elucidating neural circuit connectivity that remained unexplained based on adult structure and function alone.PaperCli

    An Actin-Based Wave Generator Organizes Cell Motility

    Get PDF
    Although many of the regulators of actin assembly are known, we do not understand how these components act together to organize cell shape and movement. To address this question, we analyzed the spatial dynamics of a key actin regulatorā€”the Scar/WAVE complexā€”which plays an important role in regulating cell shape in both metazoans and plants. We have recently discovered that the Hem-1/Nap1 component of the Scar/WAVE complex localizes to propagating waves that appear to organize the leading edge of a motile immune cell, the human neutrophil. Actin is both an output and input to the Scar/WAVE complex: the complex stimulates actin assembly, and actin polymer is also required to remove the complex from the membrane. These reciprocal interactions appear to generate propagated waves of actin nucleation that exhibit many of the properties of morphogenesis in motile cells, such as the ability of cells to flow around barriers and the intricate spatial organization of protrusion at the leading edge. We propose that cell motility results from the collective behavior of multiple self-organizing waves

    Multi-Domain Adversarial Learning

    Get PDF
    International audienceMulti-domain learning (MDL) aims at obtaining a model with minimal average risk across multiple domains. Our empirical motivation is automated microscopy data, where cultured cells are imaged after being exposed to known and unknown chemical perturbations, and each dataset displays significant experimental bias. This paper presents a multi-domain adversarial learning approach, MULANN, to leverage multiple datasets with overlapping but distinct class sets, in a semi-supervised setting. Our contributions include: i) a bound on the average-and worst-domain risk in MDL, obtained using the H-divergence; ii) a new loss to accommodate semi-supervised multi-domain learning and domain adaptation; iii) the experimental validation of the approach, improving on the state-of-the-art on two standard image benchmarks, and a novel bioimage dataset, CELL

    Patterns of basal signaling heterogeneity can distinguish cellular populations with different drug sensitivities

    Get PDF
    Non small cell lung cancer H460 clones exhibit a high degree of heterogeneity in signaling states.Clones with similar patterns of basal signaling heterogeneity have similar paclitaxel sensitivities.Models of signaling heterogeneity among the clones can be used to classify sensitivity to paclitaxel for other cancer populations
    • ā€¦
    corecore