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A central challenge of biology is to understand how individual cells process information and 
respond to perturbations. Much of our knowledge is based on ensemble measurements. However, 
cell-to-cell differences are always present to some degree in any cell population, and the ensemble 
behaviors of a population may not represent the behaviors of any individual cell. Here, we discuss 
examples of when heterogeneity cannot be ignored and describe practical strategies for analyzing 
and interpreting cellular heterogeneity.
After decades of probing, measuring, and 
analyzing the behaviors of single cells, 
it has become clear that the challenge is 
no longer to demonstrate that populations 
of “seemingly identical” cells are hetero-
geneous. Indeed, phenotypic differences 
among cells are always present at a fine-
enough resolution of inspection. Rather, 
the daunting challenge is to determine 
which, if any, components of observed cel-
lular heterogeneity serve a biological func-
tion or contain meaningful information.

Population-averaged assays are pow-
erful tools in biology, enabling the identi-
fication of components and interactions 
within complex metabolic, signaling, 
and transcriptional networks. (Popula-
tion-averages can refer to experimental 
measurements derived from assays that 
pool analytes from large numbers of 
cells or to mathematical averages taken 
over distributions of single-cell mea-
surements.) Such measurements can 
succinctly capture population state and 
readily report how these states change in 
response to perturbations. An assump-
tion is that ensemble averages reflect the 
dominant biological mechanism operat-
ing within individual cells in a population. 
Although ensemble measurements may 
be too simplistic, capturing all variation 
among cells also may be unnecessary. 
To develop accurate models of individ-
ual cell behavior—be they in the form 
of cartoons, words, or mathematics—it 
is essential to identify which cell-to-cell 
differences are important and which can 
be ignored.
A Hidden World beneath Population 
Averages
What about cells away from the mean 
(Figure 1Ai)? The behavior of such cells 
may be similar to that of the average 
behavior of the population, and observed 
variation may be summarized by a mean 
(and perhaps a variance) with no loss of 
meaningful biological information. Cell-
to-cell differences, for example those 
due to biochemical noise (Elowitz et al., 
2002; Newman et al., 2006; Ozbudak 
et al., 2002; Raser and O’Shea, 2004), 
may have no functional significance. 
So-called “housekeeping” genes are 
often chosen as references in assays 
under the assumption that their variation 
in expression is small and biologically 
unimportant (although such assumptions 
are increasingly challenged; for example, 
see Bahar et al., 2006). As a more spe-
cific example, subpopulations of R1-R6 
photoreceptor cells in the compound 
eye of the fruit fly Drosophila are consid-
ered functionally equivalent with respect 
to their response and adaptation to light 
signals (Yau and Hardie, 2009). However, 
cell-to-cell differences can have func-
tional consequences, such as seen for 
cell fate decisions in the bacterium Bacil-
lus subtilis and selection of color vision 
photoreceptors in Drosophila (Losick 
and Desplan, 2008). Recently, subpopu-
lations of clonally derived hematopoietic 
progenitor cells with low or high expres-
sion of the stem cell marker Sca-1 were 
observed to be in dramatically different 
transcriptional states and to give rise 
Cell 
to different blood cell lineages (Chang 
et al., 2008). Therefore, models derived 
from ensemble averages may not rep-
resent individual cell function even for a 
simple bell-shaped distribution of single-
cell measurements.

Population distributions can also mask 
the presence of rare or small subpopula-
tions of cells (Figure 1Aii). In such a case, 
a population mean may represent the 
vast majority of cells yet miss important 
biology. Recent studies have investigated 
the presence and dynamics of small sub-
populations within genetically identical 
populations of bacteria. These include 
the identification of pre-existing sub-
populations of slow-growing “persister 
cells” that have a negligible effect on fit-
ness under normal conditions but enable 
survival in response to drug treatment 
(Balaban et al., 2004). In other studies, 
variability in the duration of a transiently 
differentiated state may increase fitness 
in fluctuating environments (Cagatay et 
al., 2009). Similarly, small reservoirs of 
dormant stem cells have been identi-
fied within larger hematopoietic stem 
cell populations. The rapid reactivation 
of these subpopulations during times 
of injury plays a crucial role in re-estab-
lishment of homeostasis (Wilson et al., 
2008). Finally, cancer is a highly hetero-
geneous disease (Heppner, 1984; Rubin, 
1990). The origins of subpopulations 
that contribute unequally to disease 
progression or response to therapeutic 
intervention are the subject of debate. 
However, heterogeneity poses practical 
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Figure 1. Ensemble Averages and Heterogeneity
(A) Ensemble-averaged measurements can mask information contained in heterogeneity. Behaviors of cells in (i) the tail of a distribution (shaded area) or (ii) a 
small subpopulation (at right) may differ from the remainder of the population or from the “mean” behavior (dashed line at µ1). (iii) For bimodal cellular behaviors, 
a population mean may poorly represent the majority of cells. (iv) Multiple measurements may be required to distinguish different patterns of cellular heteroge-
neity. Correlated (left) or anticorrelated (right) behaviors of cells may be indistinguishable based on single measurements alone (compare histograms at sides 
of left and right density plots). Axis labels f1 and f2 represent single-cell measurements (e.g., cell size, division time, or expression of a cell surface marker). 
Dashed lines and triangles indicate population means.
(B) Heterogeneity and function: Decompositions of heterogeneity may be tested for functionally important information. (i) Single-cell measurements allow cells 
(left) to be represented as points in a (high-dimensional) feature space (right). (ii) Cell populations can be partitioned into distinct regions of feature space. This 
partition may be determined manually or automatically. Illustrated is a decomposition into two subpopulations, S1 and S2; µ represents the population mean. 
(iii) The values of a functional readout for individual subpopulations and the population mean can be tested for significant differences within a population (left; 
* indicates significance). Alternatively, different mixtures of heterogeneity observed for populations under different conditions can be tested for correlation with 
function (middle and right). “Function” refers to the evaluation of a functional readout over a collection of cells, either at the subpopulation or whole-population 
level (e.g., drug sensitivity).
challenges for building accurate clini-
cal models, particularly ones based on 
population-averaged measurements, to 
guide diagnosis and treatment of the dis-
ease (Campbell and Polyak, 2007). Even 
within clonal populations under carefully 
controlled laboratory conditions, the 
dynamics and responses of single can-
cer cells to drugs can vary widely (Cohen 
et al., 2008; Gascoigne and Taylor, 
2008), and drug-tolerant states can arise 
transiently through reversible epigenetic 
changes (Sharma et al., 2010).

An even more problematic situation 
is when the ensemble-averaged mea-
surement poorly reflects the internal 
states of the majority of the cells, any 
subpopulation of cells, or even any sin-
gle cell (Figure 1Aiii). This can occur, for 
example, when the population contains 
several dominant, yet phenotypically 
distinct subpopulations. This situation 
is observed for populations of immature 
Xenopus oocytes (Ferrell and Machleder, 
1998). Ensemble averages suggest that 
a graded input of the maturation-induc-
ing hormone progesterone is converted 
to a graded signaling output, in this case 
phosphorylation of the downstream 
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readout p42 MAP kinase. Physical 
models based on these measurements 
would predict that the “average” oocyte 
would exhibit an intermediate level of 
commitment for an intermediate level of 
progesterone stimulation. However, for 
individual oocytes, commitment is an all-
or-nothing response. That is, the popu-
lation comprises two nonoverlapping 
subpopulations—committed and non-
committed—with no oocytes at interme-
diate levels of commitment. Thus, when 
populations are mixtures of distinct sub-
populations, the biological models of rel-
evance are mechanisms operating within 
each subpopulation.

Signaling networks, even for narrowly 
defined biological functions, can be com-
plex, and constructing accurate models 
may require monitoring multiple compo-
nents (Sachs et al., 2005). New layers of 
complexity within heterogeneity may be 
revealed by simultaneously monitoring 
multiple readouts per cell (Figure 1Aiv). 
At the lowest resolution, the state of a 
population may be approximated by the 
mean of each readout, such as is rou-
tinely performed with western blots or 
microarrays, though with all of the cave-
Inc.
ats previously discussed. At an inter-
mediate resolution, the distributions of 
each readout may be analyzed inde-
pendently (so-called “univariate” analy-
sis). Though such approaches simplify 
analysis (Perlman et al., 2004), and may 
uncover heterogeneity one readout at a 
time, important relationships among the 
readouts within individual cells may be 
missed. At the highest resolution, anal-
ysis of all cellular readouts from indi-
vidual cells simultaneously (so-called 
“multivariate” analysis) may reveal both 
heterogeneity and important coupling 
among the readouts. Consider the case 
of two readouts, whose population 
distributions are each bimodal (low or 
high values). In principle, any cell could 
have one of four possible combina-
tions of (low/high, low/high) values for 
these two markers. However, analysis 
of each marker independently would 
not distinguish, for example, between 
correlated and anticorrelated expres-
sion of the two readouts within indi-
vidual cells. By contrast, multivariate 
analysis of the readouts would identify 
which of the four potential modes were 
present within any given population. 



For example, during adipogenesis in 
3T3-L1 cultured cells, readouts such as 
production of the hormone adiponec-
tin or lipid droplet expression increase 
from low to high levels, suggesting that 
the “average” cell progresses toward 
an (high, high) internal state (for adi-
ponectin and lipid droplets). However, 
single-cell studies revealed that cells 
move from a beginning (low, low) state, 
to an intermediate (high, low) state, to a 
final (low, high) state (Loo et al., 2009a). 
The expected (high, high) cellular state, 
observed with only small probability, 
was an illusion of ensemble-averaged 
measurements. Decomposing hetero-
geneity was required to develop accu-
rate models of the signaling states in 
individual adipocytes.

Thus, ensemble measurements can 
provide accurate descriptions of individ-
ual cellular behavior when heterogeneity 
simply reflects functionally meaning-
less fluctuations around a single cel-
lular state. However, when a population 
is composed of multiple cellular states, 
ignoring heterogeneity can lead to mod-
els that may be accurate at the level of 
population trends but do not reflect the 
signaling states of any individual cell. 
Hence, the use of ensemble measure-
ments to model individual cells must be 
justified.

Interpreting Cellular Heterogeneity
Heterogeneity is observed for essentially 
all dimensions of single-cell measure-
ments at high resolution. Some well-
understood dimensions are routinely 
used to sort populations into mixtures 
of cells in distinct and meaningful bio-
logical states, such as cell-cycle stage or 
cell type. But what about the multitudes 
of other dimensions, for which cell-to-
cell variation has no obvious or known 
biological interpretation? In some cases, 
cellular states can be distinguished by 
detailed molecular differences. The 
selection of a specific molecule from a 
large repertoire of possibilities generates 
enormous diversity by individual cell 
variation, such as seen for odorant, cell 
adhesion, or immune molecules (Coufal 
et al., 2009; Lomvardas et al., 2006; Mor-
ishita and Yagi, 2007; Muotri et al., 2005; 
Ribich et al., 2006). In other cases, states 
can be distinguished by large-scale 
changes, such as signal transduction 
responses to hormone stimulation (Fer-
rell and Machleder, 1998), and detailed 
molecular differences are unimport-
ant, particularly when function is buff-
ered against biochemical fluctuations 
(Shinar and Feinberg, 2010). A general 
challenge is to determine which details 
give rise to biologically meaningful dis-
tinctions within and among populations, 
and which can be ignored (i.e., when an 
ensemble average is justified).

Determining whether observed het-
erogeneity has functional significance 
requires a framework for quantifying 
heterogeneity and assessing its infor-
mation content. An intuitive and tracta-
ble approach is to decompose hetero-
geneous populations into mixtures of 
simpler, more homogeneous subpopu-
lations, based on the expectation that 
cells with relatively similar measured 
states should behave in a similar way. The 
biological relevance of such a decom-
position could be tested by determining 
whether different subpopulations, or 
mixtures of subpopulations, have differ-
ent functional properties. Decomposi-
tion-independent approaches are also 
possible for testing whether hetero-
geneity contains information: popula-
tions with different overall distributions 
may exhibit functional differences. For 
example, mechanisms of drug action 
can be classified based on comparison 
of the different distributions of cellular 
responses that they induce (Perlman et 
al., 2004). However, informative decom-
positions can provide useful guides for 
future studies, including further prob-
ing of the molecular states of the sub-
populations (Loo et al., 2009a, 2009b). 
In general, the investigation of hetero-
geneity requires a combined approach 
for capturing population statistics from 
single-cell measurements, identifying 
patterns of heterogeneity, and testing 
whether these patterns contain func-
tional information.

Heterogeneity is essentially a statisti-
cal property of cellular populations. A 
distribution of cellular behaviors can be 
estimated from observations of a small 
number of cells over a long time, or a large 
number of cells at a single time point. In 
theory, these different estimates can give 
similar information if cells behave ergod-
ically—that is, time-averaged single-
cell behaviors and ensemble-averaged 
Cel
population behaviors are equivalent 
in a probabilistic sense (although the 
property of ergodicity may be difficult 
to test rigorously) (Brock et al., 2009). 
In practice, statistical properties of cel-
lular behaviors are often estimated from 
snapshots of large numbers of cells. 
Single-cell phenotypes can be captured 
by many different measurement tech-
nologies (Figure 1Bi) (Anselmetti, 2009), 
including flow cytometry, electrophysi-
ology, microscopy, and single-cell PCR 
or sequencing. For some technologies, 
the choices of cellular features are well 
defined, whereas for others the choices 
are less clear. For example, the total 
intensity of each labeled biomarker is 
a standard readout in flow cytometry, 
whereas there is virtually no limit to the 
number of features that can be extracted 
in microscopy. The desire to extract all 
relevant information from single-cell 
assays may require strategies that bal-
ance two, somewhat opposing goals: 
interpretability and comprehensiveness. 
Interpretability suggests an intuitive con-
nection between a familiar biological 
phenotype and the measured values of 
a feature. Comprehensiveness suggests 
the ability to capture all important infor-
mation; large collections of features are 
measured with the hope that all antici-
pated (or unanticipated but important) 
biological variation is captured. In micros-
copy, strategies striving for interpretabil-
ity may use expert-selected features, 
such as cell shape, marker intensity, or 
marker localization, whereas strategies 
striving for comprehensiveness may use 
features derived from general-purpose 
transformations, such as Haralick texture 
features or Zernike moments that report 
large numbers of statistical properties 
of marker staining patterns (Boland and 
Murphy, 2001). Of course, not all features 
are expected to be equally informative 
and methods (such as principle compo-
nent analysis) are often applied to elimi-
nate noisy or redundant features and 
to reduce the dimensionality of feature 
spaces (Duda et al., 2001). The collec-
tions of extracted features allow an indi-
vidual cell to be represented as a point 
in (high-dimensional) “feature” space, 
with each axis representing a different 
measurement. Therefore, populations of 
cells are transformed into distributions 
(of points) in feature space.
l 141, May 14, 2010 ©2010 Elsevier Inc. 561



The problem of identifying patterns 
of distinct cellular behaviors in feature 
space (Figure 2Bii) can be reduced to 
well-studied, analytical, and computa-
tional problems of decomposing hetero-
geneous distributions, for which exten-
sive methodology exists and is used in 
diverse applications ranging from gene 
function prediction to speech and face 
recognition (Duda et al., 2001). In super-
vised approaches, expert knowledge 
is used to partition the feature space. 
Approaches range from simple, user-
defined thresholds (such as routinely 
used to separate subpopulations in flow 
cytometry) to more complex, machine-
learning algorithms that iteratively train 
computers to identify subpopulations 
based on examples (such as recently 
developed for high-throughput micros-
copy screening; Boland and Murphy, 
2001; Jones et al., 2009; Ramo et al., 
2009; Yin et al., 2008). In unsupervised 
approaches, computational algorithms 
partition distributions in naive, or unbi-
ased, manners. Intuitively, methods such 
as deterministic K-means clustering or 
probabilistic Gaussian mixture model-
ing seek to identify local, high-density 
regions of phenotype space (Figure 1Bii; 
Pyne et al., 2009; Slack et al., 2008). 
There are always questions of whether 
cellular behaviors can be categorized by 
a finite number of states, and whether a 
distribution has been partitioned into too 
few or too many subpopulations. Ana-
lytical criteria (Wang et al., 2007) or even 
visual inspection may be used to provide 
guidelines for such questions.

However, the ultimate usefulness of 
a decomposition is the degree to which 
it reveals biological information for a 
given functional readout. One can test 
whether the behaviors of specific sub-
populations are significantly different 
from each other or from an ensemble 
average (Figure 1Biii, left). As examples, 
bacterial subpopulations with different 
growth rates can have different degrees 
of resistance to antibiotics (Balaban et 
al., 2004), and adherent eukaryotic cell 
subpopulations with different microenvi-
ronmental properties can have different 
functional behaviors, such as virus infec-
tion efficiency and endocytosis activity 
(Snijder et al., 2009). One can also test 
whether an entire decomposition of het-
erogeneity is informative (Figure 1Biii, 
562 Cell 141, May 14, 2010 ©2010 Elsevier In
middle and right). This case is important 
when individual subpopulations cannot 
be physically isolated for functional test-
ing, or when the subpopulations interact 
with one another. As examples, differ-
ent patterns of heterogeneity for general 
signaling markers in untreated cancer 
cell populations were found to predict 
differences in drug sensitivities (Singh 
et al., 2010), and different patterns of 
heterogeneous signaling responses to 
drug treatment were used to predict 
mechanisms of drug action (Slack et al., 
2008). Further, different heterogeneous 
mixtures of isolated tumor-infiltrating 
lymphocytes were found to have differ-
ent levels of activity against tumors, as 
measured by differences in Interferon-γ 
secretion (Oved et al., 2009). An intrigu-
ing possibility is that heterogeneity can 
serve not only as a passive readout of 
population state but also as a predictor 
of future responses to perturbations, or 
even as a property that can be manipu-
lated to affect a desired population out-
put. Of course, it is not to be expected 
that every decomposition will contain 
functional information. Presumably, no 
significant functional differences should 
be observed when subpopulations are 
chosen randomly (i.e., ignoring all fea-
ture values) or chosen based on features 
that are uncorrelated with the functional 
readout. Taken together, the framework 
described above serves as a starting 
point for rigorously exploring biological 
information contained in heterogeneity.

Conclusion
Heterogeneity has been classically 
observed and speculated to be a fun-
damental property of cellular systems 
(Elsasser, 1984; Rubin, 1990). Notably, 
heterogeneity provides a mechanism 
for an organ or organism to increase its 
range of responses to changing envi-
ronmental conditions. Although we 
have focused our discussion on cells, 
heterogeneity—and the loss of informa-
tion due to ensemble averages—has 
been studied at many scales of biology, 
from single molecules (English et al., 
2006) to communities of whole popula-
tions (Kimura and Weiss, 1964). Here, 
we have sidestepped the difficult and 
fascinating problems of identifying the 
origins of cellular heterogeneity (Brock 
et al., 2009; Muotri et al., 2005; Raj and 
c.
van Oudenaarden, 2008; Spencer et al., 
2009), or understanding its differences in 
vivo and in vitro or in physiological and 
pathophysiological conditions. Rather, 
we have focused on the general chal-
lenge of characterizing and interpreting 
information contained within heterogene-
ity. Although well-characterized biologi-
cal systems may present ready choices 
for connecting heterogeneity and func-
tion, heterogeneity is often observed in 
experimental settings for which there 
are no immediate, a priori clues to its 
meaning or functional relevance. Inter-
preting heterogeneity is not solely an 
analytical challenge of fitting complex, 
multidimensional distributions, as even 
simple distributions (e.g., observed for 
the marker Sca-1) can contain subpopu-
lations enriched for biologically distinct 
functions. Beyond studies of single sub-
populations, properties of heterogeneity 
(e.g., the proportions of subpopulations 
within an overall population) may serve 
as informative readouts of population 
physiology and predictors of responses 
to perturbations. The ability to transform 
heterogeneity into a tractable, comput-
able, and bone fide property of cellular 
populations provides a rigorous starting 
point for determining which variation is 
random and which is meaningful, and for 
building better models of the behaviors 
of individual cells.
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