463 research outputs found

    Dual positive and negative regulation of GPCR signaling by GTP hydrolysis

    Get PDF
    G protein-coupled receptors (GPCRs) regulate a variety of intracellular pathways through their ability to promote the binding of GTP to heterotrimeric G proteins. Regulator of G protein signaling (RGS) proteins increase the intrinsic GTPase activity of G-subunits and are widely regarded as negative regulators of G protein signaling. Using yeast we demonstrate that GTP hydrolysis is not only required for desensitization, but is essential for achieving a high maximal (saturated level) response. Thus RGS-mediated GTP hydrolysis acts as both a negative (low stimulation) and positive (high stimulation) regulator of signaling. To account for this we generated a new kinetic model of the G protein cycle where GGTP enters an inactive GTP-bound state following effector activation. Furthermore, in vivo and in silico experimentation demonstrates that maximum signaling output first increases and then decreases with RGS concentration. This unimodal, non-monotone dependence on RGS concentration is novel. Analysis of the kinetic model has revealed a dynamic network motif that shows precisely how inclusion of the inactive GTP-bound state for the G produces this unimodal relationship

    A simplified protocol for the generation of cortical brain organoids

    Get PDF
    Human brain organoid technology has the potential to generate unprecedented insight into normal and aberrant brain development. It opens up a developmental time window in which the effects of gene or environmental perturbations can be experimentally tested. However, detection sensitivity and correct interpretation of phenotypes are hampered by notable batch-to-batch variability and low reproducibility of cell and regional identities. Here, we describe a detailed, simplified protocol for the robust and reproducible generation of brain organoids with cortical identity from feeder-independent induced pluripotent stem cells (iPSCs). This self-patterning approach minimizes media supplements and handling steps, resulting in cortical brain organoids that can be maintained over prolonged periods and that contain radial glial and intermediate progenitors, deep and upper layer neurons, and astrocytes

    Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers

    Get PDF
    Purpose: To demonstrate the safety and feasibility of leveraging therapeutic antibodies for surgical imaging. Procedures: We conducted two phase I trials for anti-epidermal growth factor receptor antibodies cetuximab-IRDye800CW (n=12) and panitumumab-IRDye800CW (n=15). Adults with biopsy-confirmed head and neck squamous cell carcinoma scheduled for standard-of-care surgery were eligible. For cetuximab-IRDye800CW, cohort 1 was intravenously infused with 2.5 mg/m(2), cohort 2 received 25 mg/m(2), and cohort 3 received 62.5 mg/m(2). For panitumumab-IRDye800CW, cohorts received 0.06 mg/kg, 0.5 mg/kg, and 1 mg/kg, respectively. Electrocardiograms and blood samples were obtained, and patients were followed for 30 days post-study drug infusion. Results: Both fluorescently labeled antibodies had similar pharmacodynamic properties and minimal toxicities. Two infusion reactions occurred with cetuximab and none with panitumumab. There were no grade 2 or higher toxicities attributable to cetuximab-IRDye800CW or panitumumab-IRDye800CW; fifteen grade 1 adverse events occurred with cetuximab-I RDye800CW, and one grade 1 occurred with panitumumab-IRDye800CW. There were no significant differences in QTc prolongation between the two trials (p=0.8). Conclusions: Panitumumab-IRDye800CW and cetuximab-IRDye800CW have toxicity and pharmacodynamic profiles that match the parent compound, suggesting that other therapeutic antibodies may be repurposed as imaging agents with limited preclinical toxicology data

    The analysis of European lacquer : optimization of thermochemolysis temperature of natural resins

    Get PDF
    In order to optimize chromatographic analysis of European lacquer, thermochemolysis temperature was evaluated for the analysis of natural resins. Five main ingredients of lacquer were studied: sandarac, mastic, colophony, Manila copal and Congo copal. For each, five temperature programs were tested: four fixed temperatures (350, 480, 550, 650 degrees C) and one ultrafast thermal desorption (UFD), in which the temperature rises from 350 to 660 degrees C in 1 min. In total, the integrated signals of 27 molecules, partially characterizing the five resins, were monitored to compare the different methods. A compromise between detection of compounds released at low temperatures and compounds formed at high temperatures was searched. 650 degrees C is too high for both groups, 350 degrees C is best for the first, and 550 degrees C for the second. Fixed temperatures of 480 degrees C or UFD proved to be a consensus in order to detect most marker molecules. UFD was slightly better for the molecules released at low temperatures, while 480 degrees C showed best compounds formed at high temperatures

    CMV infection of liver transplant recipients: comparison of antigenemia and molecular biology assays

    Get PDF
    BACKGROUND: CMV is a major clinical problem in transplant recipients. Thus, it is important to use sensitive and specific diagnostic techniques to rapidly and accurately detect CMV infection and identify patients at risk of developing CMV disease. In the present study, CMV infection after liver transplantation was monitored retrospectively by two molecular biology assays - a quantitative PCR assay and a qualitative NASBA assay. The results were compared with those obtained by prospective pp65 antigenemia determinations. MATERIALS AND METHODS: 87 consecutive samples from 10 liver transplanted patients were tested for CMV by pp65 antigenemia, and CMV monitor and NASBA pp67 mRNA assay. RESULTS: CMV infection was detected in all patients by antigenemia and CMV monitor, whereas NASBA assay identified only 8/10 patients with viremia. Furthermore, CMV infection was never detected earlier by molecular biology assays than by antigenemia. Only 5/10 patients with CMV infection developed CMV disease. Using a cut off value of 8 cells/50,000, antigenemia was found to be the assay that better identified patients at risk of developing CMV disease. However, the kinetics of the onset of infection detected by NASBA and CMV monitor seemed to have better identified patients at risk of developing CMV disease. Furthermore, before onset of disease, CMV pp67 mRNA was found to have similar or better negative and positive predictive values for the development of CMV disease. CONCLUSIONS: The present data, suggests that the concomitant use of antigenemia and pp67 mRNA assay gives the best identification of patients at risk of developing CMV disease

    Maximal Spontaneous Photon Emission and Energy Loss from Free Electrons

    Full text link
    Free electron radiation such as Cerenkov, Smith--Purcell, and transition radiation can be greatly affected by structured optical environments, as has been demonstrated in a variety of polaritonic, photonic-crystal, and metamaterial systems. However, the amount of radiation that can ultimately be extracted from free electrons near an arbitrary material structure has remained elusive. Here we derive a fundamental upper limit to the spontaneous photon emission and energy loss of free electrons, regardless of geometry, which illuminates the effects of material properties and electron velocities. We obtain experimental evidence for our theory with quantitative measurements of Smith--Purcell radiation. Our framework allows us to make two predictions. One is a new regime of radiation operation---at subwavelength separations, slower (nonrelativistic) electrons can achieve stronger radiation than fast (relativistic) electrons. The second is a divergence of the emission probability in the limit of lossless materials. We further reveal that such divergences can be approached by coupling free electrons to photonic bound states in the continuum (BICs). Our findings suggest that compact and efficient free-electron radiation sources from microwaves to the soft X-ray regime may be achievable without requiring ultrahigh accelerating voltages.Comment: 7 pages, 4 figure
    • …
    corecore