2,810 research outputs found

    Visualisation and Quantification of Morphogen Gradient Formation in the Zebrafish

    Get PDF
    During embryonic development, signalling molecules known as morphogens act in a concentration-dependent manner to provide positional information to responding tissues. In the early zebrafish embryo, graded signalling by members of the nodal family induces the formation of mesoderm and endoderm, thereby patterning the embryo into three germ layers. Nodal signalling has also been implicated in the establishment of the dorso-ventral axis of the embryo. Although one can infer the existence of nodal gradients by comparing gene expression patterns in wild-type embryos and embryos in which nodal signalling is diminished or augmented, real understanding can only come from directly observing the gradients. One approach is to determine local ligand concentrations in the embryo, but this is technically challenging, and the presence of inhibitors might cause the effective concentration of a ligand to differ from its actual concentration. We have therefore taken two approaches to visualise a direct response to nodal signalling. In the first, we have used transgenic embryos to study the nuclear accumulation of a Smad2-Venus fusion protein, and in the second we have used bimolecular fluorescence complementation to visualise the formation of a complex between Smad2 and Smad4. This has allowed us to visualise, in living embryos, the formation of a graded distribution of nodal signalling activity. We have quantified the formation of the gradient in time and space, and our results not only confirm that nodal signalling patterns the embryo into three germ layers, but also shed light on its role in patterning the dorso-ventral axis and highlight unexpected complexities of mesodermal patterning

    Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from broadly neutralizing antibodies but compromise virus infectivity.

    Get PDF
    Broadly neutralizing antibodies are commonly present in the sera of patients with chronic hepatitis C virus (HCV) infection. To elucidate possible mechanisms of virus escape from these antibodies, retrovirus particles pseudotyped with HCV glycoproteins (HCVpp) isolated from sequential samples collected over a 26-year period from a chronically infected patient, H, were used to characterize the neutralization potential and binding affinity of a panel of anti-HCV E2 human monoclonal antibodies (HMAbs). Moreover, AP33, a neutralizing murine monoclonal antibody (MAb) to a linear epitope in E2, was also tested against selected variants. The HMAbs used were previously shown to broadly neutralize HCV and to recognize a cluster of highly immunogenic overlapping epitopes, designated domain B, containing residues that are also critical for binding of viral E2 glycoprotein to CD81, a receptor essential for virus entry. Escape variants were observed at different time points with some of the HMAbs. Other HMAbs neutralized all variants except for the isolate 02.E10, obtained in 2002, which was also resistant to MAb AP33. The 02.E10 HCVpp that have reduced binding affinities for all antibodies and for CD81 also showed reduced infectivity. Comparison of the 02.E10 nucleotide sequence with that of the strain H-derived consensus variant, H77c, revealed the former to have two mutations in E2, S501N and V506A, located outside the known CD81 binding sites. Substitution A506V in 02.E10 HCVpp restored binding to CD81, but its antibody neutralization sensitivity was only partially restored. Double substitutions comprising N501S and A506V synergistically restored 02.E10 HCVpp infectivity. Other mutations that are not part of the antibody binding epitope in the context of N501S and A506V were able to completely restore neutralization sensitivity. These findings showed that some nonlinear overlapping epitopes are more essential than others for viral fitness and consequently are more invariant during earlier years of chronic infection. Further, the ability of the 02.E10 consensus variant to escape neutralization by the tested antibodies could be a new mechanism of virus escape from immune containment. Mutations that are outside receptor binding sites resulted in structural changes leading to complete escape from domain B neutralizing antibodies, while simultaneously compromising viral fitness by reducing binding to CD81

    Quantum Black Holes

    Full text link
    Static solutions of large-NN quantum dilaton gravity in 1+11+1 dimensions are analyzed and found to exhibit some unusual behavior. As expected from previous work, infinite-mass solutions are found describing a black hole in equilibrium with a bath of Hawking radiation. Surprisingly, the finite mass solutions are found to approach zero coupling both at the horizon and spatial infinity, with a ``bounce'' off of strong coupling in between. Several new zero mass solutions -- candidate quantum vacua -- are also described.Comment: 14 pages + 6 figure

    Government helper and citizen advocate? A case study of the multiple roles and pressures facing a nongovernmental organization contracted by government to strengthen community health in northern India

    Get PDF
    While nongovernmental organizations (NGOs) can potentially strengthen valuable citizen political engagement, NGOs that are increasingly oriented towards donor and government contracts may instead contribute to depoliticizing development. Amidst competing pressures, NGO experiences and agency in managing multiple roles require examination. We present a qualitative case study of an NGO implementing a government‐designed intervention to strengthen Village Health, Sanitation, and Nutrition Committees (VHSNCs) in rural north India. Despite a challenging context of community scepticism and poor government services, the NGO did successfully form VHSNCs by harnessing its respected interlocutor status, preexisting relationships, and ability to “sell” the VHSNC as a mechanism for improving local well‐being. While the VHSNC enabled community members to voice concerns to government officials, improvements often failed to meet community expectations. NGO staff endured community frustration on one hand and rebuffs from lower‐level officials on the other, while feeling undersupported by the government contract. Consequently, although contracted to strengthen a community institution, the NGO increasingly worked alongside VHSNC members to try to strengthen the public sector. Contrary to assumptions that NGOs become “tamed” through taking government contracts, being contracted to deliver inputs for community participation was intertwined with microlevel political action, though this came at a cost to the NGO

    Decision-making on intra-household allocation of bed nets in Uganda: do households prioritize the most vulnerable members?

    Get PDF
    Abstract Background Access to insecticide-treated bed nets has increased substantially in recent years, but ownership and use remain well below 100% in many malaria endemic areas. Understanding decision-making around net allocation in households with too few nets is essential to ensuring protection of the most vulnerable. This study explores household net allocation preferences and practices across four districts in Uganda. Methods Data collection consisted of eight focus group discussions, twelve in-depth interviews, and a structured questionnaire to inventory 107 sleeping spaces in 28 households. Results In focus group discussions and in-depth interviews, participants almost unanimously stated that pregnant women, infants, and young children should be prioritized when allocating nets. However, sleeping space surveys reveal that heads of household sometimes receive priority over children less than five years of age when households have too few nets to cover all members. Conclusions When asked directly, most net owners highlight the importance of allocating nets to the most biologically vulnerable household members. This is consistent with malaria behaviour change and health education messages. In actual allocation, however, factors other than biological vulnerability may influence who does and does not receive a net.http://deepblue.lib.umich.edu/bitstream/2027.42/109479/1/12936_2014_Article_3219.pd

    Evanescent Black Holes

    Full text link
    A renormalizable theory of quantum gravity coupled to a dilaton and conformal matter in two space-time dimensions is analyzed. The theory is shown to be exactly solvable classically. Included among the exact classical solutions are configurations describing the formation of a black hole by collapsing matter. The problem of Hawking radiation and backreaction of the metric is analyzed to leading order in a 1/N1/N expansion, where NN is the number of matter fields. The results suggest that the collapsing matter radiates away all of its energy before an event horizon has a chance to form, and black holes thereby disappear from the quantum mechanical spectrum. It is argued that the matter asymptotically approaches a zero-energy ``bound state'' which can carry global quantum numbers and that a unitary SS-matrix including such states should exist.Comment: 14 page

    Four Dimensional Black Holes in String Theory

    Full text link
    Exact solutions of heterotic string theory corresponding to four-dimensional charge Q magnetic black holes are constructed as tensor products of an SU(2)/Z(2Q+2) WZW orbifold with a (0,1) supersymmetric SU(1,1)/U(1) WZW coset model. The spectrum is analyzed in some detail. ``Bad'' marginal operators are found which are argued to deform these theories to asymptotically flat black holes. Surprising behaviour is found for small values of Q, where low-energy field theory is inapplicable. At the minimal value Q=1, the theory degenerates. Renormalization group arguments are given that suggest the potential gravitational singularity of the low-energy field theory is resolved by a massive two-dimensional field theory. At Q=0, a stable, neutral ``remnant,'' of potential relevance to the black hole information paradox, is found.Comment: 37 pages + 1 figure (tar compressed and uuencoded

    In Situ Probes of the First Galaxies and Reionization: Gamma-ray Bursts

    Get PDF
    The first structures in the Universe formed at z>7, at higher redshift than all currently known galaxies. Since GRBs are brighter than other cosmological sources at high redshift and exhibit simple power-law afterglow spectra that is ideal for absorption studies, they serve as powerful tools for studying the early universe. New facilities planned for the coming decade will be able to obtain a large sample of high-redshift GRBs. Such a sample would constrain the nature of the first stars, galaxies, and the reionization history of the Universe.Comment: 8 pages, 3 figures, science white paper submitted to the US Astro2010 Decadal Surve

    Single Sessions of High-Definition Transcranial Direct Current Stimulation Do Not Alter Lower Extremity Biomechanical or Corticomotor Response Variables Post-stroke

    Get PDF
    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to modulate cortical activity. However, measured effects on clinically relevant assessments have been inconsistent, possibly due to the non-focal dispersion of current from traditional two electrode configurations. High-definition (HD)-tDCS uses a small array of electrodes (N = 5) to improve targeted current delivery. The purpose of this study was to determine the effects of a single session of anodal and cathodal HD-tDCS on gait kinematics and kinetics and the corticomotor response to transcranial magnetic stimulation (TMS) in individuals post-stroke. We hypothesized that ipsilesional anodal stimulation would increase the corticomotor response to TMS leading to beneficial changes in gait. Eighteen participants post-stroke (average age: 64.8 years, SD: 12.5; average months post-stroke: 54, SD: 42; average lower extremity Fugl-Meyer score: 26, SD: 6) underwent biomechanical and corticomotor response testing on three separate occasions prior to and after HD-tDCS stimulation. In a randomized order, anodal, cathodal, and sham HD-tDCS were applied to the ipsilesional motor cortex for 20 min while participants pedaled on a recumbent cycle ergometer. Gait kinetic and kinematic data were collected while walking on an instrumented split-belt treadmill with motion capture. The corticomotor response of the paretic and non-paretic tibialis anterior (TA) muscles were measured using neuronavigated TMS. Repeated measures ANOVAs using within-subject factors of time point (pre, post) and stimulation type (sham, anodal, cathodal) were used to compare effects of HD-tDCS stimulation on measured variables. HD-tDCS had no effect on over ground walking speed (P > 0.41), or kinematic variables (P > 0.54). The corticomotor responses of the TA muscles were also unaffected by HD-tDCS (resting motor threshold, P = 0.15; motor evoked potential (MEP) amplitude, P = 0.25; MEP normalized latency, P = 0.66). A single session of anodal or cathodal HD-tDCS delivered to a standardized ipsilesional area of the motor cortex does not appear to alter gait kinematics or corticomotor response post-stroke. Repeated sessions and individualized delivery of HD-tDCS may be required to induce beneficial plastic effects. Contralesional stimulation should also be investigated due to the altered interactions between the cerebral hemispheres post-stroke
    • 

    corecore