65 research outputs found

    Constituency Influence on Senate Voting: Public School Desegregation

    Get PDF

    The Metagalactic Ionizing Radiation Field at Low Redshift

    Get PDF
    We compute the ionizing radiation field at low redshift, arising from Seyferts, QSOs, and starburst galaxies. This calculation combines recent Seyfert luminosity functions, extrapolated ultraviolet fluxes from our IUE-AGN database, and a new intergalactic opacity model based on Hubble Space Telescope and Keck Ly-alpha absorber surveys. At z = 0 for AGN only, our best estimate for the specific intensity at 1 Ryd is I_0 = 1.3 (+0.8/-0.5) x 10^-23 ergs/cm^2/s/Hz/sr, independent of H_0, Omega_0, and Lambda. The one-sided ionizing photon flux is Phi_ion = 3400 (+2100/-1300) photons/cm^2/s, and the H I photoionization rate is Gamma_HI = 3.2 (+2.0/-1.2) x 10^-14 s^-1 for alpha_s = 1.8. We also derive Gamma_ HI for z = 0 - 4. These error ranges reflect uncertainties in the spectral indexes for the ionizing EUV (alpha_s = 1.8 +/- 0.3) and the optical/UV (alpha_UV = 0.86 +/- 0.05), the IGM opacity model, the range of Seyfert luminosities (0.001 - 100 L*) and the completeness of the luminosity functions. Our estimate is a factor of three lower than the most stringent upper limits on the ionizing background (Phi_ion < 10^4 photons/cm^2/s) obtained from H-alpha observations in external clouds, and it lies within the range implied by other indirect measures. Starburst galaxies with a sufficiently large Lyman continuum escape fraction, f_ esc > 0.05, may provide a comparable background to AGN, I_0 (z=0) = 1.1 (+1.5/-0.7) x 10^{-23). An additional component of the ionizing background of this magnitude would violate neither upper limits from H-alpha observations nor the acceptable range from other measurements.Comment: 30 pages, 9 figures, accepted for Astronomical J. (Oct. 1999

    Metal Abundances in the Magellanic Stream

    Full text link
    We report on the first metallicity determination for gas in the Magellanic Stream, using archival HST GHRS data for the background targets Fairall 9, III Zw 2, and NGC 7469. For Fairall 9, using two subsequent HST revisits and new Parkes Multibeam Narrowband observations, we have unequivocally detected the MSI HI component of the Stream (near its head) in SII1250,1253 yielding a metallicity of [SII/H]=-0.55+/-0.06(r)+/-0.2(s), consistent with either an SMC or LMC origin and with the earlier upper limit set by Lu et al. (1994). We also detect the saturated SiII1260 line, but set only a lower limit of [SiII/H]>-1.5. We present serendipitous detections of the Stream, seen in MgII2796,2803 absorption with column densities of (0.5-1)x10^13 cm^-2 toward the Seyfert galaxies III Zw 2 and NGC 7469. These latter sightlines probe gas near the tip of the Stream (80 deg down-Stream of Fairall 9). For III Zw 2, the lack of an accurate HI column density and the uncertain MgIII ionization correction limits the degree to which we can constrain [Mg/H]; a lower limit of [MgII/HI]>-1.3 was found. For NGC 7469, an accurate HI column density determination exists, but the extant FOS spectrum limits the quality of the MgII column density determination, and we conclude that [MgII/HI]>-1.5. Ionization corrections associated with MgIII and HII suggest that the corresponding [Mg/H] may range lower by 0.3-1.0 dex. However, an upward revision of 0.5-1.0 dex would be expected under the assumption that the Stream exhibits a dust depletion pattern similar to that seen in the Magellanic Clouds. Remaining uncertainties do not allow us to differentiate between an LMC versus SMC origin to the Stream gas.Comment: 30 pages, 8 figures, LaTeX (aaspp4), also available at http://casa.colorado.edu/~bgibson/publications.html, accepted for publication in The Astronomical Journa

    Optical Structure and Proper-Motion Age of the Oxygen-rich Supernova Remnant 1E 0102-7219 in the Small Magellanic Cloud

    Full text link
    We present new optical emission-line images of the young SNR 1E 0102-7219 (E0102) in the SMC obtained with the HST Advanced Camera for Surveys (ACS). E0102 is a member of the oxygen-rich class of SNRs showing strong oxygen, neon , and other metal-line emissions in its optical and X-ray spectra, and an absence of H and He. The progenitor of E0102 may have been a Wolf-Rayet star that underwent considerable mass loss prior to exploding as a Type Ib/c or IIL/b SN. The ejecta in this SNR are fast-moving (V > 1000 km/s) and emit as they are compressed and heated in the reverse shock. In 2003, we obtained optical [O III], H-alpha, and continuum images with the ACS Wide Field Camera. The [O III] image captures the full velocity range of the ejecta, and shows considerable high-velocity emission projected in the middle of the SNR that was Doppler-shifted out of the narrow F502N bandpass of a previous Wide Field and Planetary Camera 2 image from 1995. Using these two epochs separated by ~8.5 years, we measure the transverse expansion of the ejecta around the outer rim in this SNR for the first time at visible wavelengths. From proper-motion measurements of 12 ejecta filaments, we estimate a mean expansion velocity for the bright ejecta of ~2000 km/s and an inferred kinematic age for the SNR of \~2050 +/- 600 years. The age we derive from HST data is about twice that inferred by Hughes et al.(2000) from X-ray data, though our 1-sigma error bars overlap. Our proper-motion age is consistent with an independent optical kinematic age derived by Eriksen et al.(2003) using spatially resolved [O III] radial-velocity data. We derive an expansion center that lies very close to X-ray and radio hotspots, which could indicate the presence of a compact remnant (neutron star or black hole).Comment: 28 pages, 8 figures. Accepted to the Astrophysical Journal, to appear in 20 April 2006 issue. Full resolution figures are posted at: http://stevenf.asu.edu/figure

    Does the Milky Way Produce a Nuclear Galactic Wind?

    Full text link
    We detect high-velocity absorbing gas using Hubble Space Telescope and Far Ultraviolet Spectroscopic Explorer medium resolution spectroscopy along two high-latitude AGN sight lines (Mrk 1383 and PKS 2005-489) above and below the Galactic Center (GC). These absorptions are most straightforwardly interpreted as a wind emanating from the GC which does not escape from the Galaxy's gravitational potential. Spectra of four comparison B stars are used to identify and remove foreground velocity components from the absorption-line profiles of O VI, N V, C II, C III, C IV, Si II, Si III, and Si IV. Two high-velocity (HV) absorption components are detected along each AGN sight line, three redshifted and one blueshifted. Assuming that the four HV features trace a large-scale Galactic wind emanating from the GC, the blueshifted absorber is falling toward the GC at a velocity of 250 +/- 20 km/s, which can be explained by "Galactic fountain" material that originated in a bound Galactic wind. The other three absorbers represent outflowing material; the largest derived outflow velocity is +250 +/- 20 km/s, which is only 45% of the velocity necessary for the absorber to escape from its current position in the Galactic gravitational potential. All four HV absorbers are found to reach the same maximum height above the Galactic plane (|z_max| = 12 +/- 1 kpc), implying that they were all ejected from the GC with the same initial velocity. The derived metallicity limits of >10-20% Solar are lower than expected for material recently ejected from the GC unless these absorbers also contain significant amounts of hotter gas in unseen ionization stages.Comment: 39 pages, 3 figures, ApJ accepte

    An HST/COS Survey of the Low-Redshift IGM. I. Survey, Methodology, & Overall Results

    Full text link
    We use high-quality, medium-resolution {\it Hubble Space Telescope}/Cosmic Origins Spectrograph (\HST/COS) observations of 82 UV-bright AGN at redshifts zAGN<0.85z_{AGN}<0.85 to construct the largest survey of the low-redshift intergalactic medium (IGM) to date: 5343 individual extragalactic absorption lines in HI and 25 different metal-ion species grouped into 2610 distinct redshift systems at zabs<0.75z_{abs}<0.75 covering total redshift pathlengths ΔzHI=21.7\Delta z_{HI}=21.7 and ΔzOVI=14.5\Delta z_{OVI}=14.5. Our semi-automated line-finding and measurement technique renders the catalog as objectively-defined as possible. The cumulative column-density distribution of HI systems can be parametrized dN(>N)/dz=C14(N/1014cm−2)−(β−1)dN(>N)/dz=C_{14}(N/10^{14} cm^{-2})^{-(\beta-1)}, with C14=25±1C_{14}=25\pm1 and β=1.65±0.02\beta=1.65\pm0.02. This distribution is seen to evolve both in amplitude, C14∼(1+z)2.0±0.1C_{14}\sim(1+z)^{2.0\pm0.1}, and slope β(z)=1.73−0.26z\beta(z)=1.73-0.26 z for z<0.47z<0.47. We observe metal lines in 427 systems, and find that the fraction of IGM absorbers detected in metals is strongly dependent on N_{HI}. The distribution of OVI absorbers appear to evolve in the same sense as the Lya forest. We calculate contributions to Ωb\Omega_b from different components of the low-zz IGM and determine the Lya decrement as a function of redshift. IGM absorbers are analyzed via a two-point correlation function (TPCF) in velocity space. We find substantial clustering of \HI\ absorbers on scales of Δv=50−300\Delta v=50-300 km/s with no significant clustering at Δv>1000\Delta v>1000 km/s. Splitting the sample into strong and weak absorbers, we see that most of the clustering occurs in strong, NHI>1013.5cm−2N_{HI}>10^{13.5} cm^{-2}, metal-bearing IGM systems. The full catalog of absorption lines and fully-reduced spectra is available via MAST as a high-level science product at http://archive.stsci.edu/prepds/igm/.Comment: This is the accepted version (v3) of the paper. Previous versions (July 2015 and Feb. 2014) should be replaced by this one. In particular, please note that the associated MAST high-level-science product has been updated to reflect the of the final state of the paper. It is available at: http://archive.stsci.edu/prepds/igm
    • …
    corecore