12,738 research outputs found

    Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration

    Get PDF
    A three-stage sorption type cryogenic refrigeration system, each stage containing a fluid having a respectively different boiling point, is presented. Each stage includes a compressor in which a respective fluid is heated to be placed in a high pressure gaseous state. The compressor for that fluid which is heated to the highest temperature is enclosed by the other two compressors to permit heat to be transferred from the inner compressor to the surrounding compressors. The system may include two sets of compressors, each having the structure described above, with the interior compressors of the two sets coupled together to permit selective heat transfer therebetween, resulting in more efficient utilization of input power

    The impact of beliefs about mental health problems and coping on outcome in schizophrenia.

    Get PDF
    Background. Using the theoretical framework of the Self Regulation Model (SRM), many studies have demonstrated that beliefs individuals hold about their physical health problems are important in predicting health outcomes. This study tested the SRM in the context of a mental health problem, schizophrenia. Method. One hundred and twenty-four people with a diagnosis of schizophrenia were assessed on measures of symptom severity, beliefs about their mental health problems, coping and appraisal of outcome at two time points, 6 months apart. Results. Using multivariate analyses and controlling for severity of symptoms, beliefs about mental health were found to be significant predictors of outcome. Beliefs about greater negative consequences were the strongest and most consistent predictors of a poorer outcome in both cross-sectional and longitudinal analyses. Conclusions. These results suggest that the SRM is a promising model for mental health problems and may highlight important areas for development in clinical, and especially psychosocial interventions

    Multicomponent gas sorption Joule-Thomson refrigeration

    Get PDF
    The present invention relates to a cryogenic Joule-Thomson refrigeration capable of pumping multicomponent gases with a single stage sorption compressor system. Alternative methods of pumping a multicomponent gas with a single stage compressor are disclosed. In a first embodiment, the sorbent geometry is such that a void is defined near the output of the sorption compressor. When the sorbent is cooled, the sorbent primarily adsorbs the higher boiling point gas such that the lower boiling point gas passes through the sorbent to occupy the void. When the sorbent is heated, the higher boiling point gas is desorbed at high temperature and pressure and thereafter propels the lower boiling point gas out of the sorption compressor. A mixing chamber is provided to remix the constituent gases prior to expansion of the gas through a Joule-Thomson valve. Other methods of pumping a multicomponent gas are disclosed. For example, where the sorbent is porous and the low boiling point gas does not adsorb very well, the pores of the sorbent will act as a void space for the lower boiling point gas. Alternatively, a mixed sorbent may be used where a first sorbent component physically adsorbs the high boiling point gas and where the second sorbent component chemically absorbs the low boiling point gas

    Flexible thermal apparatus for mounting of thermoelectric cooler

    Get PDF
    A flexible heat transfer apparatus used to flexibly connect and thermally couple a thermoelectric cooler to an object to be cooled is disclosed. The flexible heat transfer apparatus consists of a pair of flexible corrugated sheets made from high thermal conductivity materials such as copper, aluminum, gold, or silver. The ridges of the corrugated sheets are oriented perpendicular to one another and bonded sandwich-fashion between three plates to define an upper section and a lower section. The upper section provides X flexure, the lower section provides Y flexure, and both sections together provide Z flexure

    The dynamics and excitation of torsional waves in geodynamo simulations

    Get PDF
    The predominant force balance in rapidly rotating planetary cores is between Coriolis, pressure, buoyancy and Lorentz forces. This magnetostrophic balance leads to a Taylor state where the spatially averaged azimuthal Lorentz force is compelled to vanish on cylinders aligned with the rotation axis. Any deviation from this state leads to a torsional oscillation, signatures of which have been observed in the Earth's secular variation and are thought to influence length of day variations via angular momentum conservation. In order to investigate the dynamics of torsional oscillations (TOs), we perform several 3-D dynamo simulations in a spherical shell. We find TOs, identified by their propagation at the correct Alfvén speed, in many of our simulations. We find that the frequency, location and direction of propagation of the waves are influenced by the choice of parameters. Torsional waves are observed within the tangent cylinder and also have the ability to pass through it. Several of our simulations display waves with core traveltimes of 4–6 yr. We calculate the driving terms for these waves and find that both the Reynolds force and ageostrophic convection acting through the Lorentz force are important in driving TOs
    corecore