54 research outputs found

    Quasi-normal modes of rotating relativistic stars - neutral modes for realistic equations of state

    Get PDF
    We compute zero-frequency (neutral) quasi-normal f-modes of fully relativistic and rapidly rotating neutron stars, using several realistic equations of state (EOSs) for neutron star matter. The zero-frequency modes signal the onset of the gravitational radiation-driven instability. We find that the l=m=2 (bar) f-mode is unstable for stars with gravitational mass as low as 1.0 - 1.2 M_\odot, depending on the EOS. For 1.4 M_\odot neutron stars, the bar mode becomes unstable at 83 % - 93 % of the maximum allowed rotation rate. For a wide range of EOSs, the bar mode becomes unstable at a ratio of rotational to gravitational energies T/W \sim 0.07-0.09 for 1.4 M_\odot stars and T/W \sim 0.06 for maximum mass stars. This is to be contrasted with the Newtonian value of T/W \sim 0.14. We construct the following empirical formula for the critical value of T/W for the bar mode, (T/W)_2 = 0.115 - 0.048 M / M_{max}^{sph}, which is insensitive to the EOS to within 4 - 6 %. This formula yields an estimate for the neutral mode sequence of the bar mode as a function only of the star's mass, M, given the maximum allowed mass, M_{max}^{sph}, of a nonrotating neutron star. The recent discovery of the fast millisecond pulsar in the supernova remnant N157B, supports the suggestion that a fraction of proto-neutron stars are born in a supernova collapse with very large initial angular momentum. Thus, in a fraction of newly born neutron stars the instability is a promising source of continuous gravitational waves. It could also play a major role in the rotational evolution (through the emission of angular momentum) of merged binary neutron stars, if their post-merger angular momentum exceeds the maximum allowed to form a Kerr black hole.Comment: 12 pages, 5 figures, submitted to Ap

    Pion and Kaon Lab Frame Differential Cross Sections for Intermediate Energy Nucleus-Nucleus Collisions

    Get PDF
    Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data

    Radiation Shielding Optimization on Mars

    Get PDF
    Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars

    HZETRN Radiation Transport Validation Using Balloon-Based Experimental Data

    Get PDF
    The deterministic radiation transport code HZETRN (High charge (Z) and Energy TRaNsport) was developed by NASA to study the effects of cosmic radiation on astronauts and instrumentation shielded by various materials. This work presents an analysis of computed differential flux from HZETRN compared with measurement data from three balloon-based experiments over a range of atmospheric depths, particle types, and energies. Model uncertainties were quantified using an interval-based validation metric that takes into account measurement uncertainty both in the flux and the energy at which it was measured. Average uncertainty metrics were computed for the entire dataset as well as subsets of the measurements (by experiment, particle type, energy, etc.) to reveal any specific trends of systematic over- or under-prediction by HZETRN. The distribution of individual model uncertainties was also investigated to study the range and dispersion of errors beyond just single scalar and interval metrics. The differential fluxes from HZETRN were generally well-correlated with balloon-based measurements; the median relative model difference across the entire dataset was determined to be 30%. The distribution of model uncertainties, however, revealed that the range of errors was relatively broad, with approximately 30% of the uncertainties exceeding 40%. The distribution also indicated that HZETRN systematically under-predicts the measurement dataset as a whole, with approximately 80% of the relative uncertainties having negative values. Instances of systematic bias for subsets of the data were also observed, including a significant underestimation of alpha particles and protons for energies below 2.5 GeV/u. Muons were found to be systematically over-predicted at atmospheric depths deeper than 50 g/cm(sup 2) but under-predicted for shallower depths. Furthermore, a systematic under-prediction of alpha particles and protons was observed below the geomagnetic cutoff, suggesting that improvements to the light ion production cross sections in HZETRN should be investigated

    Faster and More Accurate Transport Procedures for HZETRN

    Get PDF
    Several aspects of code verification are examined for HZETRN. First, a detailed derivation of the numerical marching algorithms is given. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of various coding errors is also given, and the impact of these errors on exposure quantities is shown. Finally, a coupled convergence study is conducted. From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is also determined that almost all of the discretization error in HZETRN is caused by charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons are given for three applications in which HZETRN is commonly used. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times faster for galactic cosmic ray simulations

    Recent Developments in Three Dimensional Radiation Transport Using the Green's Function Technique

    Get PDF
    In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to dangerous radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. In order to better determine and verify shielding requirements, an accurate and efficient radiation transport code based on a fully three dimensional radiation transport model using the Green's function technique is being develope

    Predicting Cell Death and Mutation Frequency for a Wide Spectrum of LET by Assuming DNA Break Clustering Inside Repair Domains

    Get PDF
    Cosmic radiation, which is composed of high charged and energy (HZE) particles, is responsible for cell death and mutation, which may be involved in cancer induction. Mutations are consequences of mis-repaired DNA breaks especially double-strand breaks (DSBs) that induce inter- and intra-chromosomal rearrangements (translocations, deletions, inversion). In this study, a computer simulation model is used to investigate the clustering of DSBs in repair domains, previously evidenced by our group in human breast cells [1]. This model is calibrated with experimental data measuring persistent 53BP1 radiation-induced foci (RIF) and is used to explain the high relative biological effectiveness (RBE) of HZE for both cell death and DNA mutation frequencies. We first validate our DSB cluster model using a new track structure model deployed on a simple geometrical configuration for repair domains in the nucleus; then we extend the scope from cell death to mutation induction. This work suggests that mechanism based on DSB repair process can explain several biological effects induced by HZE particles on different type of living cell

    Differential Cross Sections for Proton-Proton Elastic Scattering

    Get PDF
    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models

    Investigating Material Approximations in Spacecraft Radiation Analysis

    Get PDF
    During the design process, the configuration of space vehicles and habitats changes frequently and the merits of design changes must be evaluated. Methods for rapidly assessing astronaut exposure are therefore required. Typically, approximations are made to simplify the geometry and speed up the evaluation of each design. In this work, the error associated with two common approximations used to simplify space radiation vehicle analyses, scaling into equivalent materials and material reordering, are investigated. Over thirty materials commonly found in spacesuits, vehicles, and human bodies are considered. Each material is placed in a material group (aluminum, polyethylene, or tissue), and the error associated with scaling and reordering was quantified for each material. Of the scaling methods investigated, range scaling is shown to be the superior method, especially for shields less than 30 g/cm2 exposed to a solar particle event. More complicated, realistic slabs are examined to quantify the separate and combined effects of using equivalent materials and reordering. The error associated with material reordering is shown to be at least comparable to, if not greater than, the error associated with range scaling. In general, scaling and reordering errors were found to grow with the difference between the average nuclear charge of the actual material and average nuclear charge of the equivalent material. Based on this result, a different set of equivalent materials (titanium, aluminum, and tissue) are substituted for the commonly used aluminum, polyethylene, and tissue. The realistic cases are scaled and reordered using the new equivalent materials, and the reduced error is shown

    A Reference Field for GCR Simulation and an LET-Based Implementation at NSRL

    Get PDF
    Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context
    corecore