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A
BRYNTRN
E-grid
GCR
GeV
HZETRN
MeV
SPE

Atomic mass unit
BaRYoN TRaNsport
Energy grid
Galactic Cosmic Rays
Giga electron Volt
High charge (Z) and Energy TRaNsport
Mega electron Volt
Solar Particle Event
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Abstract

The deterministic transport code HZETRN was developed for research scientists and
design engineers studying the effects of space radiation on astronauts and
instrumentation protected by various shielding materials and structures. In this work,
several aspects of code verification are examined. First, a detailed derivation of the light
particle (A<4) and heavy ion (A>4) numerical marching algorithms used in HZETRN is
given. References are given for components of the derivation that already exist in the
literature and discussions are given for details that have been neglected in the past. The
present paper provides a complete description of the numerical methods currently used in
the code and is identified as a key component of the verification process. Next, a new
numerical method for light particle transport is presented, and improvements to the
heavy ion transport algorithm are discussed. A summary of various coding errors
discovered while implementing the new method is also given, and the impact of these
errors on previously predicted exposure quantities is shown. Finally, a coupled
convergence study is conducted by refining the discretization parameters (step-size and
energy grid-size). From this study, it is clearly shown that past efforts in quantifying the
numerical error in HZETRN were hindered by single precision calculations and
computational resources. It is also determined that almost all of the discretization error
in HZETRN is caused by the use of discretization parameters that violate a numerical
convergence criterion related to charged target fragments below S0 AMeV. Total
discretization errors are given for the old and new algorithms to 100 g/cm2 in aluminum
and water, and the improved accuracy of the new numerical methods is demonstrated.
Run time comparisons are given between the old and new algorithms for three
applications in which HZETRN is commonly used. The new algorithms are found to be
almost 100 times faster for solar particle event simulations and almost 10 times faster for
galactic cosmic ray simulations. The improved algorithms will be implemented in all
future versions of HZETRN.

1. Introduction

As human exploration beyond Earth's orbit into radiation environments where measured data are
sparse and testing is difficult, models will be heavily relied upon to make decisions regarding vehicle
design and mission planning. This reliance on model results requires a systematic effort of verification,
validation, and uncertainty quantification. Verification is the process of determining that a computational
model accurately represents the underlying mathematical model and its solution; validation is the process
of determining if the underlying mathematical model accurately represents physical reality, and uncertainty
quantification is the process of identifying all relevant sources of uncertainties and quantifying their impact
on the inputs and outputs of the model [NASA 2008]. This paper addresses verification of the radiation
transport code HZETRN (High charge (Z) and Energy TRaNsport) [Wilson et al. 1991, 1995, 2006; Slaba
et al. 2010] with a focus on documentation, improving efficiency and stability, and quantifying
discretization error through convergence testing.

Documentation is a critical component of verification [Roy 2005] and has been emphasized in the
NASA standard for modeling and simulation tools [NASA 2008]. While there have been many papers
published that describe the transport model and physical parameters [Wilson et al. 1975, 1977, 1986, 1991,
2005, 2006] as well as the marching algorithms and numerical methods [Wilson et al. 1989, 1991, 2005,
2006; Lamkin et al. 1992, 1994; Shinn et al. 1991] used in HZETRN, various gaps still exist in the
documentation. For example, many of the mathematical details associated with inverting the Boltzmann
integro-differential equation into a Volterra type integral equation have been neglected in the literature.
Since the inversion depends on scaling conventions and physical arguments that are specific to the one-
dimensional space radiation transport problem, these mathematical details are a necessary component of
code documentation. In this paper, we first give a detailed review and derivation of the existing light
particle (n, p, 2H, 2H, 3He, 4He) and heavy ion (A > 4) marching algorithms used in HZETRN. This will
include all of the details associated with recasting the integro-differential equations as Volterra type



integral equations and all of the physical and numerical approximations. References are given for
components of the derivation that already exist in the literature, and discussions are given for details that
have been neglected in the past. As a result of the review, a numerical convergence criterion is identified
that, to the authors' knowledge, has yet to be documented or examined. It is shown later in the paper that
the discretization parameters (spatial step-size and energy grid-size) commonly used in HZETRN violate
this criterion and cause a systematic under-prediction of light charged target fragments below 50 AMeV.

This detailed derivation and review of the numerical methods also resulted in the development of a
new light particle marching algorithm that is almost 100 times faster than its predecessor for solar particle
event (SPE) simulations. Though computational efficiency has long been a core feature of HZETRN, there
were certain applications for which the existing algorithms resulted in long run-times. For example,
consider the interpolation or ray-by-ray methods used to compute mass averaged quantities in human
phantoms exposed to space radiation. Interpolation methods are quite fast once the interpolation database
has been generated, but it takes the current code over seven hours to generate a detailed database on a
single processor. Similarly, the ray-by-ray method can take over 20 hours to compute the mass averaged
particle fluence spectra at a single point in the body on a 192 core cluster. Approximately 1000 body points
have been identified by Slaba et al. [2009] as sufficient for computing whole body effective dose in human
phantoms exposed to SPE and galactic cosmic rays (GCR); this would indicate a significant computational
cost. To help reduce these run-times and increase code efficiency, we present a new numerical method for
the light particle marching algorithm that reduces the required number of interpolations and removes the
need for integral fluence to be calculated at each step. The new method is shown to be almost 100 times
faster for solar particle event (SPE) simulations and almost 10 times faster for galactic cosmic ray (GCR)
simulations. The accuracy of the new methods is discussed later in the report.

Controlling round-off error and identifying coding errors is another important point of code
verification. Though previous convergence studies [Shinn et al. 1991; Slaba et al. 2010] and benchmark
comparisons [Wilson et al. 1988, 1991, 2005, 2006; Heinbockel et al. 2009a, 2009b] would indicate that
round-off error is of little concern, such comparisons were generally made at moderate shielding depths
where round-off errors are assumed to be small. However, as HZETRN is increasingly used in atmospheric,
lunar, or Martian surface applications with large material thicknesses (>50 g/cm2), round-off error could be
a major concern and needs to be investigated. Therefore, we also discuss the impact of round-off error and
coding errors in the existing marching algorithms in HZETRN. Selected light particle cross sections are
calculated in single and double precision, and the impact of round-off error in the single precision
calculations is shown to be large in certain cases. In the process of modifying HZETRN to enable double
precision calculations, various coding errors were also discovered that have non-negligible effects on
particle fluence spectra, dose, and dose equivalent. The coding errors are discussed and resolved. The
interpolation routine [Wilson et al. 1995] frequently used in the transport algorithms is also examined, and
a new routine is developed that is faster, has improved extrapolation procedures, and has the capability of
interpolating around certain discontinuities. The improved code stability attained by using double precision
calculations and removing the various coding errors is clearly shown.

In many computational models or algorithms, continuous variables are discretized to reduce a
differential equation into an algebraic expression that is evaluated numerically. The algorithm is said to
converge if the numerical solutions reach an asymptotic limit as the discretization parameters approach
zero. In order to show convergence and quantify discretization error, the discretization parameters are
refined several times and the differences between the various solutions are compared. Such studies are
often referred to as convergence tests. As part of a larger verification and validation effort, configuration
controlled convergence tests are created which can be rerun when significant changes are made to the
codes. The ability to rerun such tests will help prevent the introduction of errors into the code as
modifications are made in the future. In HZETRN, the spatial variable x and energy variable E are
discretized. Two convergence tests have previously been published [Shinn et al. 1991; Slaba et al. 2010];
however, those tests were primarily focused on verifying code stability and were limited by computational
resources. In the first analysis, Shinn et al. [1991] conducted a coupled convergence test in both space and
energy. However, only two step-sizes (h = 0.5 g/cm2 and h = 1.0 g/cm2) and two energy grids (N = 30 and
N = 60, where N is the number of grid points) were considered; only nucleons were transported, and all
calculations were in single precision. No attempt was made to quantify discretization error, and numerical
convergence was not clearly demonstrated. In the more recent analysis, it was determined that at least 100
energy grid points are needed to control energy discretization error [Slaba et al. 2010]. It will be shown
here that even step-sizes of h = 0.01 g/cm2 can result in moderate errors for low energy target fragments



with small residual ranges. Neither the codes nor the results were configuration managed in these previous
studies. Thus, a more detailed convergence analysis is necessary. We conduct a convergence study in both
step-size and energy grid-size. The spatial discretization parameter, h, is reduced by factors of 2 from its
common value of 0.5 g/cm2 down to 2-11 g/cm2. Similarly, the number of energy grid points is increased by
factors of ~1.5 from 100 up to 753. Particle fluence, dose, and dose equivalent values are then computed at
various depths in aluminum and water slabs exposed to SPE and GCR environments using the old and new
transport algorithms and each of the discretization parameters. The resulting data are used to show that the
new algorithms reach an asymptotic solution as the discretization parameters are refined. The improved
accuracy of the new methods is also clearly demonstrated. Discretization errors are also given for the
discretization parameters commonly used in HZETRN (h = 0.5 g/cm2 with 100 energy grid points). These
errors are expressed as percent differences from the converged numerical solutions obtained with the finest
discretization parameters.

2. Transport Equations

The Boltzmann transport equation with the continuous slowing down and straight ahead
approximations is given as [Wilson et al. 1991]

∞
B[O

j
(x,E)] = ∑∫E 

ojk (E,E') Ok (x,E')dE', 	 (1)
k

with the linear differential operator

B[Oj (x, E)] ≡ [ ∂x Aj ∂E S
j (E) + o j (E) I Oj (x, E) , 	 (2)

and boundary condition

Oj (0, E) = fj (E) .
	 (3)

In equations (1)-(3), Oj (x,E) is the fluence of type j particles at depth x with kinetic energy E, Aj is the

atomic mass number of a type j particle, Sj(E) is the stopping power of a type j ion with kinetic energy E,
uj(E) is the total macroscopic cross section for a type j particle with kinetic energy E, and σjk(E ,E') is the
macroscopic production cross section for interactions in which a type k particle with kinetic energy E'
produce a type j particle with kinetic energy E. The summation limits in equation (1) will be discussed
shortly. The boundary condition spectrum, fj (E) , is considered to be a known function over a broad

energy spectrum.
Consider the continuous slowing down operator

1

A ∂
∂
E

Sj (E) ] Oj (x,E)
	

(4)

which represents the rate at which charged particles lose energy as they interact with the electron clouds in
the target media. Although atomic interactions cause charged particles to lose energy in discrete increments
as they pass through a material, there are a sufficient number of these interactions in a unit path length to
justify a continuous approximation [Wilson et al. 1991]. It is advantageous to approximate this term by
considering the relation from Bethe stopping power theory [Bethe et al. 1930]

Vkrk ≈ V 
jrj,
	 (5)



where vj = Zj
2 / Aj with Zj being the atomic charge of a type j particle, and the range of a type j ion, rj, is

given by the range-energy relationship

rE 	 l
r ≡ A J 

dE	
(6)j	 j o S

j (E' )
.

From equation (5) and (6), it is clear that the proton range and stopping power can be approximated as

r ≈ vjrj , 	 (7)

vjS (E) ≈ 
A 

Sj (E ) . 	 (8)
j

The approximation in equation (7) is depicted in Figure 1 and is less accurate at low energy (<10 AMeV) or
low residual range.

Equation (8) allows the transport equation to be written as

∞
B [oj (x, E)] = ∑ ∫ E ajk (E, E ' )ok (x, E') dE' , 	 (9)

k

with

B [oj (x, E)] 
≡ [ ∂x −

vj 
∂
E

S (E) 
+ 

aj (E) 
⎥ 
o

j 
(x, E ) . 	 (10)

⎦

Figure 1. Comparison of scaled proton range, r/vj, and 4He range ,rj, in aluminum.
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The motivation, justification, and physical implications associated with approximating each ion stopping
power with a scaled proton stopping power has been discussed in detail elsewhere [Wilson et al. 2006].
Ultimately, the approximation allows significant numerical simplifications, as will be shown later.

There are two paths taken (for light particles and heavy ions) in developing numerical procedures
for equation (9). For heavy ions, it is noted that projectile fragments have energy and direction very near
that of the projectile, while target fragments are produced nearly isotropically with low energy and travel
only a short distance before being absorbed [Wilson et al., 1977, 1986, 1991, 1995, 2006]. The approximate
decoupling of target and projectile fragments is discussed in detail by Wilson et al. [1977, 1991, 1995] and
suggests that target fragments can be neglected in the heavy ion transport procedure (their contribution to
dose is approximately accounted for after the transport procedure). The equal velocity assumption for
heavy ions can be expressed in the production cross section as [Shinn et al. 1992]

ajk(
E , E ') = ajk (E')6(E − E'),	 (11)

where ujk(E) is the production cross section for interactions in which a type k particle with kinetic energy E
produce a type j particle. In this case, equation (9) becomes

B[Oj (x,E)] = ∑ ajk (E)Ok (x,E) .	 (12)
k

The absence of target fragments in the heavy ion transport procedure allows one to take the summation in
equation (9) over all projectiles with mass greater than that of the fragment. If all the transported particles
are ordered according to mass, then equation (9) can be succinctly written as

B[Oj (x,E)] = ∑ ajk (E)Ok (x,E), 	 (13)
k>j

which is the transport equation found in Wilson et al. [1986, 1991, 1995, 2006] and will be referred to as
the heavy ion transport equation. The upper summation limit in equation (13) can vary, but it is common to
use no fewer than 59 ions. See Cucinotta et al. [2006] for a discussion of isotope selection.

Alternatively, for light particles (n, p, 2H, 2H, 3He, 4He) both projectile and target fragments are
included in the transport procedure. The broad energy distribution in collision events also indicates that the
equal velocity assumption in equation (11) cannot be used. In this case, no simplifications to equation (9)
are used, and the summation is taken over all light particles. Hereafter, equation (9) will be referred to as
the light particle transport equation which includes both neutrons and light ions. It should be noted that for
SPE environments with a negligible heavy ion component, only the solution to the light particle transport
equation is required. For GCR environments, there are both heavy ion and light ion components, and
solutions to the light particle and heavy ion transport equations must be evaluated simultaneously. The
coupling of these two equations will be discussed later.

3. Light Particle Marching Equation

The following formulation of the light particle marching equation was taken from Wilson et al.
[1975, 1989, 1991, 2006], Shinn et al. [1991], Lamkin et al. [1992, 1994], Cucinotta [1993], and Slaba et
al. [2010]. Further references in this section will be given only for mathematical techniques and physical
arguments.

To develop a numerical marching procedure for the light particle transport equation, it is necessary
to invert the differential operator on the left hand side of equation (9) by using the method of characteristics
[Haberman 1989]. To do this, define the scaled quantities

oj (x,r) ≡ vjS(E)Oj (x,E)	 (14)

and



sjk (r, r') ≡ S(E)ajk (E, E'),	 (15)

where the proton range, r, is defined in terms of the proton stopping power, S(E), by the range-energy
relationship

('E dE'

	

r ≡
 J	 ,

0 S(E ')

and the modified scaling parameter is given by

	

vj ≡
⎪⎪⎧ 1	 , j

⎨⎪
(17)

vj , j ≠ n.

The quantity vj is used in fluence scaling to avoid a trivial solution for the neutrons. Notice that we have

used the scaled proton range in equation (14) to allow the function Oj (x, r) to be defined over the common

proton range, r, for each particle type j.
In terms of the scaled quantities introduced in equations (14) and (15), the integrals on the right

hand side of the light particle transport equation become

∞

∑∫E ajk (E , E' )^k (x , E' ) dE' = ∑∫E ⎝ S (E )
s
jk

(r , r' )
⎠⎝ vkS (E )

k (x , r') dE
k

1	
(18)

= ∑ vkSI 
∫r

^ 
sjk (r, r' )Ok (x, r') dr'

where the differential has been transformed using

dr' = 1 dE' .
S(E')

Now, note that

∂Oj = 
∂Oj dE 

= v .S(E) 
∂ 

⎡⎣ S (E)O (x, E) ⎤⎦ , 	 (20)
∂r	 ∂E dr	 j ∂E	

j

so that the differential operator on the left hand side of the light particle transport equation can be expressed
in terms of the scaled quantities as

(16)

(19)

∂ 	 ∂ 	 ⎤
− vj
	

S (E) + aj 	
∂ j

∂x	 aE	
(E ) ⎥ Oj (x, E) =

⎦
	 ∂x

1
=

vjS(

=
⎡ ∂⎢
⎢⎣ ∂x

− vj ∂
E [ S (E) 

O
j ] + 

aj (E )Oj

_ ∂0 
− 

vj ∂oj 1

E) ∂x	 vjS(E) ∂r + vjS(E) ajj
	 (21)

∂ 	 ⎤ 1
− vj ∂r + 

aj (E) 
⎥ vjS (E) 

Oj (x, r)

where the functional dependencies of the scaled and unscaled fluence have been suppressed in certain
places for brevity. Equations (18) and (21) are now combined to give the light particle transport equation in
terms of the scaled quantities as
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∂ −
v

i
 ∂ + (E ) ⎥ 	

1
	 Oj (x , r) = ∑ 	 1	 f sjk (r , r ' )Ok (x , r') dr' , 	 (22)

∂x 	 ∂r 	 ⎦ vjS (E)	 k v S (E) rk

which simplifies to give the final scaled form

∂ 	 ∂
∂x 

− vj 
∂

r + aj (r), Oj (x, r) =
	 vk

vj 

J r
∞

 
sjk (r , r ' )Ok (x, r') dr' , 	 (23)

The term aj (E) has been replaced with aj (r) , since for a given value of r, equation (16) can be inverted

to determine E.
Equation (23) is inverted (see Appendix A) using the method of characteristic to obtain the

Volterra type integral equation

Oj (x , r) = e
−"j (r , x )

Oj (0, r + vjx )

^ ∞ 	 rx,	 (24)

k

'
v

k 
∫ 

x 

∫
0 r+vjz '

e
"j( )

sjk (r + vjx ', r ')Ok (x − x' , r' ) dr ' dx' ,
v

with the integrating factor

x
"j (r , x)≡∫

0 
aj (r + vj t )dt .	 (25)

Equation (24) can be easily written as a marching procedure in terms of the step-size, h, as

Oj (x + h, r) = e "j (r , h )
Oj (x , r + vjh )

v
j
 

J 
h

	
e

−"j(r , x ' )
sjk (r + vjx ', r ')Ok (x + h − x' , r' ) dr ' dx' .	

(26)

v 0 r+vjz

We now seek to approximate the differential fluence in the integrand of equation (26). Define

∞ −
Qjk (x , r + vjx ') ≡ ∫ 	 ' e 

"j ( r , x ') sjk (r + vjx ', r ')Ok (x + h − x' , r' ) dr' , 	 (27)
r+ vjx

then

Qjk (x , r + vjx ') = Qjk (x , r) + O(x') .	 (28)

The O(xk) notation indicates that the remaining terms in the polynomial expansion are of degree k or
greater. The exponential attenuation term can also be expanded as

e
−"j(r , x ' ) = 1 + O (x '),	 (29)

where the expansions e3 = 1 — Q + 0(02 ) and "j (r , x') ≈ x' aj (r) have been used. Substitution of

equations (27)-(29) into equation (26) produces
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v
Oj (x + h, r) = e

− ,Oj  (r , h

) 
Oj (x , r + vj h) + ∑ 

vk 
J h Qjk (x , r) + O (x') dx' , 	 (30)

or

Oj (x + h, r) = e 
,Oj (r , h )

Oj (x , r + vjh) + O (h) .	 (31)

Equation (31), without the O(h) term is the exact solution to the homogeneous equation

∂ −
v. ∂ + a j (r ) ⎥ Oj (x, r) = 0 . 	 (32)

∂x	 ∂r

The homogeneous equation neglects secondary particle production through nuclear interactions and
accounts only for the slowing down of particles due to atomic interactions and the loss of particles due to
nuclear absorption. If the step-size is taken to be sufficiently small such that

h « - ,	 (33)
aj (r)

(i.e. much less than the nuclear mean free path), then the local truncation error will be negligible as the
particles will not have travelled far enough to suffer a nuclear collision [Wilson et al. 1991]. Equation (33)
is the first convergence criterion and has been well documented in the literature [Wilson et al. 1975, 1989,
1991, 2006]. It is worth noting that nuclear mean free path lengths are on the order of many g/cm 2, while
the step-sizes usually taken in HZETRN are less than 1 g/cm2.

Equation (31) can be used to approximate the integrand in equation (26) by noting that [Wilson et
al. 1975, 1989, 1991, 2006]

Ok (x + h − x', r') = e ,Ok (r' , h −x' ) Ok (x , r '+ vk (h − x')) + O (h) . 	 (34)

Substitution of equation (34) into equation (26) yields

Oj (x + h, r) = e"j
(r , h )

Oj 
(x , r + vjh )

vj ∫
h

∫r+ 

vjx '
e

− ,Oj ( r , x ') − ,Ok (r ', h − x ')
sjk (r + vjx ', r ')Ok (x , r '+ vk (h − x') ) dr ' dx ' (35)

v 0 r+

+O (h2 ) ,

where the O(h2) terms are small. This is the light particle marching equation given by Wilson et al. [2006]

for which numerical procedures will be developed and studied later. Hereafter, the O(h 2 ) will be assumed

in the marching equations and not written.

4. Heavy Ion Marching Equation

The following derivation of the heavy ion marching equation was taken from Wilson et al. [1977,
1986, 1991, 1995, 2006] and Shinn et al. [1992]. Further references will only be given for mathematical
techniques. Any variables and symbols used in this section that were defined in the previous section hold
their respective definitions.

The heavy ion transport equation was given previously in equation (13) as



B [Oj (x, E)] = ∑ ujk (E) Ok (x , E) . 	 (36)
k > j

Define the scaled heavy ion fluence

Oj (x, r) ≡ vjS(E )Oj (x , E) ,	 (37)

and replace ujk (E) with ujk (r) since, for a given r, equation (16) can be inverted to find E. Notice that the

scaling in equation (37) is identical to the scaling used for the light particles in equation (14) except that we

have used vj instead of vj . This minor change reflects the fact that we are now only transporting heavy

charged particles for which vj > 0 and trivial scaling is not possible.

Following the procedure outlined in the previous section, equation (36) is written in terms of the
scaled fluence as

∂ 	 ∂ 	 ⎤ ,,/'	 v j

∂x 
− vj ∂r + 

uj 
(r) j (x , r) = ∑ 

v ujk (r )Ok (x, r).	 (38)
k > j k

Equation (38) is inverted (see Appendix B) using the method of characteristic to obtain the Volterra type
integral equation

Oj (x , r) = e "j (r , x )
Oj (0, r + vjx )

+∑
 v

r 	
(39)

v

j

 fo

x

e—
'3j (r'x '

)ajk (r + vjx' ) Ok (x — x' , r + vjx') dx'
k > j k

with the exponential term

x
"j (r , x) 

= ∫0 
uj (r + vj t )dt .	 (40)

Equation (39) can be easily written as a marching procedure in terms of the step-size, h, as

Oj (x + h, r) = e
−"j (r , h )

Oj (x , r + vjh)

+∑ 
v
j
 
f h

e
 "j ( r , x ' ) u

jk (r + vjx ' )Ok (x + h − x' , r + vjx ' )dx' .	
(41)

k > j kv o

As before, use the O(h) homogenous solution [Wilson et al. 2006]

Ok (x + h − x', r + vjx ') = e
−"k (r+ v

jx' , h −x' )
Ok (x , r + vjx '+ vk (h − x')) + O (h) , 	 (42)

to obtain

Oj (x + h, r) = e "j (r , h )
Oj (x , r + vj

h )

V f h
e '3j ( r , x ' ) −

'3j
−x' )

u . (r + v x ' ) Ok (x , r + v .x '+ v h − x' dx' 43)
k > j 

v
k

7k	 j	 7	 k
o	

(	 ))	 (

+O (h2 ) .
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From here, approximate the integral over x' from 0 to h by expanding the production cross
section and particle fluence in a Taylor series [Wade 2000] as

	

ajk (r + vjx ' ) = ajk (r + vjh / 2) + O (x' ) , 	 (44)

ψk (x , r + vjx '+ vk (h − x ')) = Ok (x , r + (vj + vk )h / 2) + O(x') ,	 (45)

and obtain

Oj (x + h, r) = e−"j ( r , h ) oj 
(x, r + vjh)

v+ ∑ vj ajk (r + vjh / 2)ok (x , r + (vj + vk )h / 2) ∫ 
h

e−pj (r , x ' ) − Qk
(r+ v

jx' , h −x') dx' 	 (46)
k > j k

+ O (h2 ) .

The remaining integral is similarly handled by considering the following Taylor expansions for the
exponential terms

x '

Oj (r , x') = ∫0 
aj (r + vjt )dt

fo aj (r + vjh / 2)dt	 (47)

= aj (r + vjh / 2) x ' + O( (x ')2 ),

h −x'

	

Ok (r + vjx' , h − x') = f0	
ak (r + vjx '+ vk t)dt

h x− '

	

≈ fo 	 ak (r + vjx '+ vkh / 2)dt	 (48)
= aj (r + vjx '+ vk h / 2) (h − x')

≈ aj (r + (vj + vk )h / 2) (h − x') + O( (x .

The integral is now evaluated as

∫

h
e− ljj (r , x ' ) − Qk (r+ vjx' , h −x') dx' ≈ ∫

h
e−aj (r + vjh /2)x '-ak (r + ( vj + vk ) h /2)(h − x ') dx'

0	 0

= 	 e−aj (r + vjh /2)h − e ak (r+ (vj + vk )h /2)h 	 (49)

ak (r + (vj + vk )h / 2) − aj (r + vjh / 2) + 
O (h2 )

The final marching procedure is given by

0j (x + h, r) = e− '3j  (r , h ) oj 
(x , r + vj

h)
v.

	

+ ∑ 
7 ajk ( r + vjh /2)Ok (x , r + (vj + vk )h /2)	 (50)

k > j vk

e−a
j

(r + v
j
h /2)h − e−a

k
(r+ ( v

j
+ v

k
)h /2)h

×
ak (r + (vj + vk )h / 2) − aj (r + vjh / 2) + 

O(h2 )
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where the O(h2) terms are small. This is the heavy ion marching equation given by Wilson et al. [2006] for

which numerical procedures will be developed and studied later. Hereafter, the O(h2 ) will be assumed in

the marching equations and not written.

5. Existing Light Particle Marching Equation Numerical Methods

In this section, the numerical methods developed to evaluate equation (35) are reviewed and the
error analysis found in the literature for those methods is summarized. The following notation and
terminology will be used extensively throughout the remainder of the report. An energy grid (E-grid) refers

to a discrete set of energy values distributed in some manner between a minimum energy value, Emin , 
and

a maximum energy value, Emax . The ith component of the E-grid is denoted as Ei . A range grid (r-grid)

refers to a discrete set of proton range values distributed in some manner between a minimum range value,
r
min , and a maximum range value, rmax . The ith component of the r-grid is denoted as ri . The number of

grid points in a grid, or grid-size, is denoted by N. It will be assumed that all grid indexing is from i = 1 to
i = N. Equal-log spacing is also used extensively; the ith component of an equal-log spaced E-grid is
evaluated as

Ei = 10 log(Emin ) +ΔE( i − 1)
	

(51)

where

Δ __ log(Emax ) − log(Emin )	
(52)E	

N −1

and the logarithms are base 10. Note that an energy grid can be converted to a range grid, and vice-versa,
using equation (16).

In Section 3, we derived the light particle marching equation (35) as

oj (x + h, r) = e
− !^j(r , h )

oj
 (x, r + vjh)

+ ∑vk r h
∫

∞ 	 e−!^j(r , x ' ) − !^k (r' , h − x' )
sjk (r + vjx ', r ')ok (x, r '+ vk (h − x')) dr' dx'.	

(53)

v J 0 r + vjx

It is clear from equation (53) that the quantity oj (x, r + vjh) will likely have to be evaluated for range

values not on the prescribed r-grid. Wilson et al. [1991] and Lamkin et al. [1992] have shown that a log-log
cubic Lagrange interpolating polynomial provides sufficient accuracy with a minimal number of grid
points. The terminology “log-log” refers to taking the logarithm of both the dependent and independent
variables prior to interpolating. The interpolated value is then exponentiated to adjust for the initial
logarithm. It has been shown that higher order Lagrange polynomials offer little more in accuracy, and
higher order splines can introduce uncontrollable oscillatory behavior that is problematic in iterative
marching procedures.

First simplify the integral over x' from 0 to h by using a modified single point midpoint rule for
integrable functions a(x), b(x), and c(x) of the form

fJ h 
a (x )b (x) c (x)dx ≈ a (h / 2) [∫ h b (x) dx ] c (h / 2) . 	 (54)

0

This approximation will be accurate if the functions a(x) and c(x) are nearly constant over the interval
[0, h] . When applied to equation (53), this approximation yields [Wilson et al. 1991, 2006]
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Oj (x + h, r) = e
−"j (r , h)

Oj (x , r + vj
h )

vj ∫
∞ 	 −"j( r , h /2)− "k(r ', h /2) 

` J 
h

	

^]	
(55)

+
	 vk r + vjh /2

e
	

o sjk (r + vjx , r') dx Ok (x , r +vk h / 2) dr

It is clear that the modified midpoint rule has decoupled the source integrals in equation (53); however, the
approximation will only be accurate if the step-size is sufficiently small to satisfy

e(r + vjh / 2) ≈ e(r) ,	 (56)

or

h « r / vj ≈ rj .	 (57)

Equation (57) is the second convergence criterion. Recall that the first criterion was identified
previously in equation (33) and required the step-size to be smaller than the nuclear mean free path length.
To the authors' knowledge, this second criterion has never been explicitly stated or addressed in the
literature. Note that the range of a 100 MeV proton in aluminum is —10 g/cm 2, so a step-size of 0.5 g/cm2

will be sufficient in this approximation. However, a 10 MeV proton in aluminum will travel —0.17 g/cm 2

before coming to rest, and a 1 MeV proton in aluminum will travel —0.004 g/cm 2 before coming to rest.
This indicates that step-sizes of 0.5 g/cm2 and 1.0 g/cm2 studied previously [Shinn et al. 1991] do not
accurately transport low energy target fragments. It will be shown later that even step-sizes near 0.01 g/cm 2

will systematically under-predict the source integral by neglecting the particle production from projectiles
with low ranges near that of fragments. This approximation will be tested in detail when the coupled energy
grid and step-size convergence study is conducted.

Continue simplifying the light particle transport equation by noticing that for charged particle
fragments

f
h

0 sjk (r + vjx' , r' ) dx' = 
1
	

r + vj h
sjk (u , r' ) du

v
i7 

J r

1 ⎡
f 	

r

v 	
s
jk

(u , r' ) du − fo sjk
(u , r' ) du ⎥

(58)j	
⎦

1 ⎡ r e (r + vj h)	 e (r)

= 
vj ⎣ J 0	

a jk (E , E') dE − ∫0 a jk (E , E') dE

FA 	 ^. )
F	 hk 	 .

The term e(r) is the energy associated with the proton range r, and for neutron fragments, denoted by j =

n,

h

f
0 snk (r + vnx ' r') dx ' 

= f h snk (r , r') dx'

	

J o	 \	

= hs
nk (r, r')	 (59)

≡ F nk (r, r'; h) .

The light particle transport equation is now written as

Oj (x + h, r) = e 
"j (r , h )

Oj (x , r + vj
h )

vj (' ∞ 	" ( r , h /2)− "k(r ', h/2) Δ , , '	
,
	

(60)

	

f	 e
−
	 Fk (r r • h )Ok (x r + vk h / 2) dr

k 
vk r+ vjh /2
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The exponential attenuation terms are simplified using [Shinn et al. 1991; Lamkin et al. 1992]

f
h

e )3j (r , h) = e L 
Qj (r + vj t )dt 

≈ e 
Qj (r) h−
	 (61)

e
−

'3j , =
 

e
−" °

h /2
Q

j
(r + vj t )dt 

≈ e
—Qj (r ) h /2	 (62)J o

and

e k̂
(r ', h /2) = e

−
f 

h /2
Qk ( r '+ vk t )dt 

≈ e−Q
k'

(r)h /2 .	 (63)

Equations (61)-(63) are exact for neutrons and have been shown [Shinn et al. 1991; Lamkin et al. 1992] to
produce negligible errors for charged particles with step-sizes up to h = 0.5 g/cm2. The light particle
transport equation is now reduced to

O
j 

(x + h, r) = e
−Q (r )

hOj (x, r + vj
h)

vj 	 −Q. (r)h /2−
uk (r ')h/2 Δ 	 i	 i	 '	

(64)
_ f	 e	 F 

k 
(r, r ; h)

k
 (x, r + vk 

h / 2) dr
k vk 

r+ vjh /2

Now consider another one-point quasi-midpoint rule for integrable functions f(x) and g(x)
integrated over a closed interval [a, b]

fab 
f (x )g (x )dx ≈ f (x) fab g (x )dx ,	 (65)

where x = (a + b) / 2. This approximation will be accurate if f(x) is nearly constant over the interval

[a, b] . The composite quasi-midpoint rule is obtained by extending the approximation over several sub-

intervals within a given region

N −1

∫
ab 

f (x )g (x )dx ≈ ∑ f (xi )∫  

xi +1 

g (x )dx ,	 (66)
a	 xii = 1

where x1 = a , xN = b, and xi = (x
i + 1 + xi ) / 2. This approximation is similar to the multi-group

method commonly used in nuclear reactor transport theory and requires the sub-intervals [xi , xi+ 1 ] to be

sufficiently small such that f(x) is nearly constant over the sub-interval [Marchuk et al. 1986]. The
composite quasi-midpoint rule in equation (66) can be applied to the integral in equation (64) by first

making a simple change of variables ( r'' = r '− v
j
h / 2 ) so that the light particle transport equation

becomes

O
j 

(x + h, r) = e
−Q (r )

hOj (x, r + vj
h)

+
	 v

L 
(r∞ 

e
-Qj (r )h /2− Qk (r '' + vj h /2) h /2	

(67)
Fo (r , r n+ v

j
h / 2; h )O

k
 (x , r n+ (v

j 
+ v

k 
)h / 2) dr ^^

jk

k vk ,J r

Define the integral fluence as
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∞
Ψ j (x, r) = ∫r Oj (x, r'' )dr'' , 	 (68)

so that for a given ri, equation (67) is evaluated as

− Or
Oj (x + h , ri ) = ej

(r  ) h 
Oj (x , ri + vjh)

N − 1

+∑ -=-vj 
∑ e 

Orj (; )h /2− Ork ( rm )h /2
FΔ(ri rm + vjh / 2; h)	 (69)

k vk m = i

×[Ψ j (x , rm + (vj + vk )h / 2) −Ψ j (x , rm + 1 + (vj + vk )h / 2)]

where rm
≡ (r

m + 1 + rm ) / 2. Slaba et al. [2010] have recently shown this approximation to be poor for

neutron elastic interactions in which the energy loss between the pre-collision and post-collision neutron is

very small. They have adjusted the neutron elastic component, F°
el

, so that it is now evaluated as

F!, el (ri , rm ; h) = hS (E) Ornn (ri , rm ) > ,
el
	 (70)

where

1	 E (r)

(Ornn (ri , rm = 	 /
	 f (

m+ 1 
Ornn (E(ri ), E ') dE ', 	 (71)

E (rm + 1 ) − E(rm )	 rm)

is the average value of the differential neutron elastic production cross section over the interval [rm, rm+1].

Note that another approximation has also been made, namely

e 
Ork(rn + vj h /2) h /2 ≈ e Ork(rn)h /2.	 (72)

Equations (68)-(72) define the light particle marching procedure used in HZETRN and tested in this report.
A final point to make about the light particle marching procedure is related to manner in which it is coded
(ie. the main algorithm used to evaluate the equation). Figure 2 gives a general process description of the
light particle marching algorithm. The required inputs are the initial and final positions as well as the
boundary flux/fluence at the initial position. The next step is to determine the maximum step-size ( hmax <
0.5) and integer P such that P iterations of the light particle marching equation will propagate the fluences
from the initial position to the final position. Once the constant step-size has been determined, the
exponential attenuation term and production cross sections are computed for all values of r on the r-grid.
These values are then used repeatedly within the main loop. Once the main loop is entered, the integral
fluence must be computed, and the differential and integral fluences must be interpolated for each particle
and each range value.

The most computationally expensive portion of the calculation is the cross section calculation,
which has been outlined in a bold dashed line in Figure 2. The integral fluence, interpolation, and source
term calculations are not as computationally expensive, but are repeated several times within the loop and
are therefore important. They have been outlined with a smaller dashed line. It should also be noted that in
this algorithm, all of the computations are carried out in single precision. More will be said about this later.

14



Figure 2. Process description of the existing light particle transport algorithm.

6. New Light Particle Marching Equation Numerical Methods

In this section, new numerical methods are presented to evaluate the light particle marching
equation. The approximations used in the previous section to get from equation (53) to equation (67) are all
used in this section; therefore, begin with equation (67) and make the substitution

r' = r ''+ (v
j
 + vk )h / 2,	 (73)

so that the light particle transport equation becomes

Oj (x + h, r) = e−o (r )h
oj 

(x, r + vj
h)

∞ −
-Q. (r )h /2 − ok (r ' − vkh /2)h /2—Δ

	; 	 ,	 ' ,
(74)

+ k∑f e	 Fk (rr − vk h /2 h) k (x r ) dr
k	

r

where

vj
F° (r, r'; h ) ≡ F° (r, r'; h) .	 (75)

vk

Now, suppose that the fluence in the integrand, ok (x, r') , can be approximated by a linear

combination of log-linear basis splines as
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N

Ok (x , r ') ≈ ∑ B(,1) (r ' )Ok (x, rm ) ,	 (76)
m = 1

with the log-linear spline

⎪⎪⎪
ln(r / rm − 1 )/ln(rm / rm − 1 ) , r ∈ [rm − 1 , rm]

B(l) (r) = ⎨ ln(rm + 1 / r)/ln(rm +1 / rm ) , r ∈ [rm , rm + 1 ].	 (77)

0	 ,otherwise

Substitute equation (77) into equation (74) and get

Oj (x + h, r) = e
−° (r )h

Oj (x, r + vjh )

+ ∑
N

N Wk 
(x , r

m
)∫

∞ 	 e °j (r ) h /2 −°k (r '− vk h /2)h /2
F° (r , r '− v h / 2; h)BQ) (r ')d r ' . 

(78)
∑

k m = 1 /	 r+ ( vj + vk ) h /2	
k

It is clear from equation (78) that the integrand and the integral no longer depend on the fluence or the
depth in the material. In fact, the integral can now be treated as a constant matrix of production coefficients
depending only on the step-size and the r-grid. If we evaluate equation (78) at the ith r-grid value, then the
production coefficients can be defined as

a
im

(h) a 
°j (ri ) h /2 −°k (r ' − vk h /2) h /2

-A (r
i

, r '− vk h / 2; h )B^l) (r ') dr ' , 	 (79)∫ri + ( vj + vk ) h /2

so that the transport equation is now greatly simplified as

N	
/'Oj (x + h, i) = e

−°j (ri 
) h

Oj
 (x , i + vj h) + ∑∑ aim (h)'Nk (x , rm ).(80)

k m= 1

This approach casts the production integral as a linear combination of terms computed on the original r-
grid requiring no further interpolation or integration.

The production coefficients, aim , are further simplified by noting that the basis spline, B((n 
) (r '), is

non-zero only in the region [rm − 1 , rm+ 1 ] . Therefore,

aim (h) = J r

rb
e

−°j ( ri )h /2−°k (r '− vkh /2) h /2
F° (a , r '− vk h / 2; h )B(1) (r ') dr ',	 (81),J 

a

where

r
a 

= max { ri + (vj + vk )h / 2, rm − 1
 },	 (82)

rb = min { rN , rm+ 1 } ,
	 (83)

and min and max refer to the minimum and maximum values, respectively. For neutron elastic interactions,
the upper limit has been adjusted to

rb = min { rN , rm +1 , ra } ,	 (84)
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where ra is the proton range associated with the energy Ea = E(ri ) / aT , E( ri ) is the energy associated

with the proton range ri, and aT is the target dependent parameter given by

2

aT =^AT
+

1 ⎠

where A T is the mass of the target nucleus. To understand where the term ra was taken from, note that

Wilson et al. [1991] have parameterized the neutron elastic production cross section to be non-zero in the
energy region

aTE' < E < E' ,	 (86)

where E' is the energy of the pre-collision neutron and E is the energy of the post-collision neutron. This
equation can also be expressed in terms of the pre-collision neutron energy as

E < E' < E / aT . 	 (87)

For heavy targets, in which aT —> 1, the non-zero region of the neutron elastic production cross section can
become smaller than the spacing of the E-grid (or r-grid). Including the upper bound of the elastic cross
section in the selection of the upper limit of integration will properly account for such occurrences.

Similarly, for quasi-elastic interactions involving 4He projectiles, the lower limit of integration has
been adjusted to

ra = max { ri + (vj + vk )h / 2, rm − 1 , ri
( B

) + h / 2 } , 	 (88)

where ri
 is the proton range associated with the energy E (ri ) + EB , and EB is the binding energy of the

struck nucleus. To understand where the term ri
(B) + h / 2 was taken from, recall that for 4He quasi-elastic

interactions, secondary 4He ions have energy E satisfying

E < E '− EB ,	 (89)

where E' is the projectile energy and EB is the binding energy of the struck nucleus. In equation (81), the

cumulative production cross section, jk
FΔ

 , is evaluated at r '− vk h / 2 . Since vk = 1 for 4He, the

minimum projectile energy must be E (ri
( B

) + h / 2) .

In order to further simplify the integral in equation (81), the exponential terms in the integrand are
approximated as

e
−°j (ri ) h /2 −°k (r ' − vk h /2)h/2 ≈ e

−°j (ri )h /2− °k (r ) h /2 ,
	 (90)

with r ≡ (ra + rb ) / 2. The approximation is valid since the exponential terms are slowly varying over the

small interval (ra , rb). In this case, the production coefficients become

aim (h) = e 
°

j
(r

i
) h /2 −°

k
(r )h/2∫

rr

b F° (ri , r '− vkh / 2; h)B l̂) (r') dr' , 	 (91)
a

(85)
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and are numerically evaluated using a 10-point Gauss-Legendre quadrature. For some reactions in which
the cross sections are highly peaked or rapidly varying over the interval (ra, rb), several subintervals are
used to improve accuracy, and the quadrature is applied over each of the subintervals. For n producing n
through elastic collisions, ten subintervals are used (100 quadrature points per integral); for n producing n
through reactive interactions, five subintervals are used (50 quadrature points per integral); for 4He
producing 4He through quasi-elastic interactions, five subintervals are used (50 quadrature points per
integral). For all remaining reaction channels, two subintervals are used (20 quadrature points per integral).

Even though the numerical integrations are carried out over small subintervals of the r-grid, the
production coefficients are still computationally expensive to calculate for a single h value; therefore, they
are approximated by using the log-linear interpolation

aim (h) ≈ exp { a,m
) (hp + 1 ) + [ aY) (hp+ 1 ) − a,,

l
,
)
 (hp ) ] (0) − h (0 ) / (0) 1 − h (0 ) } ≡ a

*
m , 	 (92)+

where aY
) ≡ log(aim ) and 0) ≡ log(h) . This requires the coefficients aim (h) to be pre-computed forim

several values of h from 0.0 g/cm2 to 0.5 g/cm2 . The h-grid has been taken to be

hp = {0.0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.25, 0.5} . 	 (93)

The final marching equation for light particles is now written as

N
0//''(x + h, %) = e

−'j i
) hO

j 
(x, 

T + vj h) + ∑∑ a
im'Nk 

(x, r
m

).(94)44
	 k m= 1

After reviewing the older light particle marching algorithm depicted in Figure 2, it was determined that the
cross sections used in the exponential attenuation term could also be pre-computed and passed to the
algorithm as an argument. This modification has been made in the new algorithm. A general process
description of the revised light particle marching algorithm is depicted in Figure 3. The required inputs are
the initial and final positions as well as the boundary flux/fluence at the initial position, the attenuation
cross sections, and the production coefficients as a function of h. The next step is to determine the
maximum step-size (hmax < 0.5) and integer P such that P iterations of the light particle marching equation
will propagate the fluences from the initial position to the final position. Once the constant step-size has
been determined, the exponential attenuation term and the production coefficients are computed for all
values of r on the r-grid.

In the new algorithm, a significant improvement in efficiency is gained since the production
coefficients are now obtained through a simple log-linear interpolation and the exponential attenuation
terms are computed directly from the attenuation cross sections. Once the main loop is entered, only the

interpolated values, 0j (x, r + vjh) , must be computed at each iteration. No integral fluences need to be

computed, and no interpolations over the integral fluences need to be calculated. The most computationally
expensive portion of the calculation is now the interpolation and has therefore been given a dashed outline
in Figure 3. The interpolation routine [Wilson et al. 1995] used in previous versions of HZETRN and
BRYNTRN was reviewed and several modifications were made to improve efficiency and robustness. The
updated routine still performs log-log cubic interpolation with Lagrange polynomials but is more efficient
and has improved logic for interpolation around certain discontinuities and extrapolations past rmax. A
comparison of the routines will be given later. It should also be noted that in the new algorithm, all of the
computations are carried out in double precision; the need for double precision will be shown later.

The updated algorithm is much simpler and faster than its predecessor. An estimate of the
improvements can be obtained by simply counting the number of interpolations in a single iteration of the
light particle transport equation. For this exercise, recall that there are six particles to transport and assume
there are N grid points in the r-grid. The results are summarized in Table 1. It is clear the new algorithm
requires several orders of magnitude fewer interpolations than the old algorithm.
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Figure 3. Process description of the new light particle transport algorithm.

Table 1. Number of interpolations per step in the old and new light particle transport algorithms.

Grid-size Interpolations
(N) Old New
100 364,800 600
150 817,200 900
300 3,254,400 1800
500 9,024,000 3000

7. Heavy Ion Marching Equation Numerical Methods

The heavy ion marching equation was given previously as

Oj (x + h, r) = e "j (r , h )
Oj (x , r + vjh)

v.
+ ∑ ujk ( r + vjh /2)Ok (x , r + (vj + vk )h /2)

k > j vk

eaj(r + vjh /2)h − e
−ak(r + (vj + vk) h /2) h

× 	 .
ak (r + (vj + vk )h /2)− aj (r + vjh /2)

(95)
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Inspection of equation (95) reveals that the only numerical technique required is interpolation. The
interpolation routine used in the heavy ion marching algorithm [Wilson et al. 1995] is the same routine
used in the light particle marching algorithm. Thus, to improve efficiency and robustness, this routine has
been replaced with the updated version mentioned in the previous section. A comparison of the routines
will be given shortly.

8. Coupling Light Particle and Heavy Ion Solutions for GCR

The GCR environment is composed of energetic protons, alpha particles, and heavier ions with
Z > 2. In order to simultaneously transport all of these particles using the methods outlined above, the
light particle and heavy ion marching algorithms must be coupled. This coupling has never been explicitly
documented, but has existed in HZETRN for some time. The complete marching algorithm for GCR
environments can be succinctly written as

Oj (x + h , ri ) 
_
— e

-a (r ) h
Oj (x , ri + vjh)

N

+H (J − j )∑ ∑ a*
im Ok (x , rm )O

k m= 1

vj
ajk ( r+vjh / 2) Ok(x,r+ (vj+vk)h / 2)	

(96)
+ ∑

k>J * vk
e aj (r+ vj h /2) h − e

−ak 
(r +(vj + vk )h /2)h

× 	 /
ak (r + (vj + vk )h / 2) − aj (r + vjh / 2)

The index J* refers to the heaviest light ion (4He), the Heaviside function is

⎪⎪⎧H (J − j)≡ ⎨
0	 j > J	

(97)
1	 j ≤ J⎪⎩

and the lower limit of the last summation term is given by

⎪⎪⎧J* ≡
j > J

J , j ≤ J.

For completeness, the same marching equation is given in terms of the old marching algorithms as

Oj (x + h, r) = e j i
)

Oj (x, r + vjh)
a

N − 1

+H (J − j )∑ 
vj ∑ e aj (ri ) h /2− a

k (rm )h /2
FΔ (ri , rm + vjh / 2; h )

k 
vk m=i

× [Ψ j (x, rm + (vj + vk )h / 2) −Ψ j (x, r
m+ 1 + (vj + vk )h / 2) ]	 (99)

v.
+ ∑ ^ ajk ( r + vjh /2) Ok (x , r + (vj + vk ) h /2)

k>J * vk
e aj (r+ vj h /2) h − e 

ak (r +(vj + vk )h /2)h

×
ak (r + (vj + vk )h / 2) − aj (r + vjh / 2)

The only difference between equation (96) and (99) is the form of the light particle production term. The
physical meaning of the coupling is the same in either equation.

The simplest way to explain and understand the GCR transport equation is by considering two
separate cases. First, suppose we are interested in the transport of a single heavy ion with particle subscript

(98)
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p. Since p refers to a heavy ion, it must be true that p > J, so that H (J − p) = 0 and J* = p.

Therefore, the light particle production term is neglected and only the heavy ion transport equation remains

Op (x + h , ri ) = e
−a (rp i) h 

p (x , ri + vph)

v
+ p apk (r + vph / 2) ok (x, r + (vp + vk )h / 2)	 (100)

k>p vk

e 
ap(r + vp h /2) h − e-ak(r +(vp+ vk) h /2) h

×
ak (r + (vp + vk )h /2)− ap (r + vp h /2)

There is nothing surprising in this result; it simply reiterates that heavy ions are transported with the heavy
ion transport equation.

Now, suppose that we are interested in the transport of a single light particle with particle
subscript p. Since p refers to a light particle, it must be true that p ≤ J, so that H (J − p) = 1 and

J* = J. In this case, the marching algorithm becomes

Op (x + h , ri ) = e
−a (rp i) h 

p (x , ri + vph)
N	

/'a
* `^'k (x, rm )

k m=1

vp
 apk (r + vp h / 2) ok (x , r + (vp + vk )h / 2)	

(101)

k>J vk

e 
ap(r + vp h /2) h − e-ak(r +(vp+ vk) h /2) h

×
ak (r + (vp + v

k )h /2)− a
p (r + vp h /2)

which is identical to the light particle marching algorithm, except that the additional summation term has
been added. The second summation term is taken over all heavy ions and represents the source of light
particle projectile fragments produced by collisions between heavy ions and the target media. This second
summation term is the coupling mechanism between the light particle and heavy ion marching equations.

9. Round-Off Error, Coding Mistakes, and Interpolation

In this section, the impact of single precision round-off error, coding errors and interpolation on
exposure quantities and overall code stability is examined. First, the errors caused by single precision
calculations in the light particle cross sections are analyzed. These errors are significant enough to cause
instabilities in the transport algorithms that are problematic for material thicknesses > 50 g/cm 2. Various
coding errors related to light particle production cross sections that have a non-negligible impact on fluence
spectra and exposure quantities are also discussed. Finally, the new interpolation routine mentioned in
sections 6 and 7 is compared to the previous routine [Wilson et al. 1995], and the improved efficiency and
robustness of the updated algorithm is shown. For the convergence tests (discussed later), all the errors,
mistakes, and interpolation routines have been corrected in the original and updated algorithms so that any
differences can be attributed only to the numerical algorithms.

Subtractive cancellation can occur in computational algorithms when the difference is computed
between two numbers that are nearly equal in a given precision. This problem was occurring for some of
the light particle cross section calculations. Recall that the integrated light particle production cross sections
were computed as a difference of two cumulative production spectra according to

Δ '	 1 ⎡ e (r +vsh )	 e (r )
F k (r, r h) ≡ 

vs
⎣ fo	 ask (E, E') dE − ∫0 

ask (E, E') dE	 (102)
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For large fragment energies, where e(r + vjh) z -(r), the two integrals in equation (102) become nearly

equal. Thus, in single precision, the difference will lose numerical precision and may be evaluated as zero.
An example of this is shown in Figure 4, where the integrated light particle production cross section,

Fj° (r, r'; h) , for 1 AGeV 4He ions producing 3H and 3He in aluminum [Cucinotta et al. 1993] are evaluated

in single and double precision. For fragment energies larger than ~50 AMeV, the single precision results
are zero and are therefore not visible on the plot. Similar results were also found for other reactions and
projectile energies. The impact of this round-off error on particle fluence spectra can be seen in Figure 5,
where the secondary 3H and 3He fluences at 100 g/cm2 in aluminum exposed to the 4He component of the
1977 solar minimum GCR spectrum [O'Neill and Badhwar 2006] are shown. The instabilities in the single
precision results above 10 AGeV are clear. As these results are propagated to larger depths, the instabilities
grow in magnitude, reach lower energies, and eventually cause algorithm failure.

Various coding errors were also discovered in the algorithms that generate the light particle
production cross sections. To understand these coding errors, it is necessary to first review how differential
production cross sections are represented in HZETRN. From Wilson et al. [1991], the light particle
differential cross sections can be expressed as

arjk(E, E ') = mjk (E')σk (E')fjk (E, E'),	 (103)

where σk(E') is the macroscopic cross section for the projectile, mjk(E') is the mean multiplicity of type j
particles produced by type k particles with energy E', and fjk(E ,E') is the energy spectrum of the reaction.
The spectral term is normalized so that

∫ ∞0 
fjk (E, E') dE = 1. 	 (104)

Figure 4. Integrated production cross section for a 1 AGeV 4He ion producing 3He and 3H in aluminum.
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Figure 5. Secondary 3H and 3He fluences computed using single and double precision cross sections at 100
g/cm2 in aluminum exposed to the 4He component of the 1977 solar minimum GCR spectrum.

For each of the reactions, there is a maximum fragment energy, Emf, above which the spectral term
is identically zero. For example, for nucleon production from nucleon-nucleus interactions, the fragment
energy is required to be less than the projectile energy; thus, Emf = E' [Wilson et al. 1991]. These
constraints were imposed on the integrated light particle production cross sections in equation (102) by

setting Fj° (r, r '; h) = 0 if either s(r + νjh) or e(r) were greater than Emf. This constraint correctly accounts

for the case when both energies are greater than Emf, but it does not account for the case when e(r + νjh) >

Emf and e(r) < Emf. One would expect this error to cause a small under-prediction of secondary particles by
effectively truncating the integration limits in equation (102). The necessary corrections have been made so
that the integrated light particle production cross sections are now properly evaluated up to their limits for
all energies and step-sizes. The effect of this algorithmic error is shown in Figure 6 where we have
computed the proton fluences at 100 g/cm 2 in aluminum exposed to the August 1972 King SPE [King
1974]. As expected, the results with the maximum fragment energy coding error, " Emf Error," under-predict
the corrected results, "Emf Corrected." The numerical errors shown in Figure 6 are on the order of 25%
below 1 MeV.

Another coding error was found in which a modified proton elastic cross section was incorrectly
added into a non-elastic reaction channel. For the reaction, n + T —> p + X, where n is a neutron, T is the
initial target state, p is a proton, and X is the final target state, the production cross section was evaluated as

up, (E, E') = [ mp, (E')σ, (E')fp, (E, E') ⎤⎦ + σ
el (E')f̂ l (E, E') , 	 (105)

where the superscript "el" refers to elastic. The bracketed term contains the correct quantities for the
reaction, and the non-bracketed term is the modified proton elastic cross section that should not be
included. Notice that the additional term uses the neutron elastic cross section and the proton elastic
spectrum. Thus, not only is the term used incorrectly, it is being evaluated improperly as well. Surprisingly,
this error, coupled to the Emf error mentioned above, can produce results very near the corrected code. In
Figures 7 and 8, the isolated and coupled effects of both errors are shown. In the Figures, "Emf Error" refers
to the maximum fragment energy error mentioned previously, "pel Error" refers to the proton elastic error in
equation (105), and the "Corrected" results were obtained with both errors removed. The coding errors have
very different impacts in aluminum and water. In the aluminum target, the proton elastic error has almost
no effect when the maximum fragment energy error is present. However, in the water target, the proton
elastic error has a large effect whether the maximum fragment energy error is present or not.
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Figure 6. Proton fluences computed with and without the maximum fragment energy coding error at 100
g/cm2 in aluminum exposed to the August 1972 King SPE.

A final coding error was found in the evaluation of direct knockout target fragments with mass 2 <
A < 4. The spectral term for this reaction was parameterized as [Cucinotta et al. 1996]

' = 
Aj exp (−EA / w0 )

fjk (E E)
	 w0 [ 1 − exp(−E '/ w0 ) ]	

(106 )

where Aj is the fragment mass and w0 is a spectral width dependent on the projectile energy given by

w0

— ⎪⎪⎧ 40 + E '5 , if E' ≤ 800
j

⎪⎩
E	

200	 , if E' > 800.	
(107)

After reviewing the algorithm where this parameterization is found, it was determined that the fragment
energy, E, instead of the projectile energy, E', was being incorrectly used in the evaluation of w0 . The effect
of this spectral width coding error on secondary particle production is shown in Figure 9 where we have
shown the 4He and secondary 2H flux spectra in 100 g/cm2 of aluminum exposed to the 1977 solar
minimum GCR environment. The dashed curves marked with " w0 Error" are the results generated with the
fragment energy in place of the projectile energy in the evaluation of w0 in equations (106) and (107). The
impact is significant between 10 AMeV and 1000 AMeV. Similar results were also found in the secondary
3H and 3He spectra as well.
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Figure 7. Proton fluences computed with and without the maximum fragment energy and proton elastic
coding errors at 100 g/cm2 in aluminum exposed to the August 1972 King SPE.

Figure 8. Proton fluences computed with and without the maximum fragment energy and proton elastic
coding errors at 100 g/cm2 in water exposed to the August 1972 King SPE.
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Figure 9. 4He and secondary 2H flux spectra computed with and without the spectral width error in 100
g/cm2 of aluminum exposed to the 1977 solar minimum GCR environment.

Lastly, the interpolation routine used in previous versions of HZETRN is compared to a new
interpolation routine that is faster and more robust. Both routines used cubic Lagrange interpolating
polynomials. A cubic Lagrange interpolating polynomial requires four data points ( xi, yi), (xi+1, yi+1), (xi+2,

yi+2), and (xi+3, yi+3). A common choice is to choose the four abscissa points symmetrically about the
interpolating point so that xi+1 < x < xi+2. However, if the interpolating point is near the boundary of the
domain, one may also choose xi < x < xi+1 or xi+2 < x < xi+3. The log-log cubic Lagrange interpolating
polynomial is obtained by taking the natural log of the four data points, ( xi, yi), (xi+1, yi+1), (xi+2, yi+2), (xi+3,

yi+3),and the interpolation point, x. The interpolated value is then exponentiated to account for the initial
logarithm.

The interpolation routine previously used in the transport algorithms [Wilson et al. 1995]
performed log-log cubic interpolation and extrapolation. The search procedure used to find the abscissa
points closest to the interpolation point was linear and searched in one direction from the origin (started
from the first data point and searched forward one point at a time). All logarithms and exponentials were
computed within the algorithm. No logic was included to ensure that extrapolated results matched the
trends of the data within the domain (ie. increasing or decreasing). Also, no logic was included to check for
non-smooth data.

In the updated algorithm, the search procedure used to find the abscissa points is linear and
searches in either direction from the previously used interpolation point. Thus, when the routine is called
repeatedly with an ordered or sequential set of interpolation points, the search algorithm uses previous
results to find the nearest abscissa points. The new algorithm also avoids the use of logarithms and
exponentials. Instead, the natural log of the data points is computed once prior to interpolation and used
repeatedly. The extrapolation procedure has been switched to log-log linear. This will ensure that
extrapolated results always match the trend of the data near the end of the domain. Logic has also been
included to check for non-smooth data. In the event that the interpolated result does not lay between its
nearest two data points, the interpolated value is re-computed using linear interpolation. The benefit of this
logic for non-smooth data sets will be examined shortly.
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To show the improved efficiency of the updated algorithm, the August 1972 King SPE is
transported through 100 g/cm2 of aluminum using a step-size of h = 0.5 g/cm2 and neglect all nuclear
production. The transport solution is given simply as

ψp (x + h, r) = e 
σp (r ) h ψp (x, r + h) ,	 (108)

requiring only interpolation to compute ψp (x, r + h) . It took —4.9 milliseconds to reach 100 g/cm2 using

the new interpolation routine, and it took —16.3 milliseconds to reach 100 g/cm2 using the old interpolation
routine. The new routine is almost 3.5 times faster than the previous one.

To show the improved robustness of the updated algorithm, we propagate a modified form of the
August 1972 King SPE through 2 g/cm2 of aluminum using a step-size of h = 0.5 g/cm2. The modified
spectrum has been adjusted so that the proton fluence above 50 MeV is 1.0 particles/(cm2-MeV). The
results are shown in Figure 10. Note that the original discontinuity at 50 MeV has been shifted to
approximately 20 MeV because of atomic interactions in the target. The benefit of the added logic for non-
smooth data is clear. The old algorithm over-predicts the results below 20 MeV, especially near the
discontinuity; it also sharply under-predicts the results just past the discontinuity. This oscillatory behavior
is characteristic of cubic polynomials and can be problematic when such errors are propagated to larger
depths. Conversely, the new algorithm properly interpolates through a discontinuity and introduces no
oscillatory behavior.

Figure 10. Comparison of old and new interpolation routines in 2 g/cm 2 of aluminum exposed to a modified
form of the August 1972 King SPE.
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To show the combined effects of the errors identified in this section, we compare dose values
computed with the original code (single precision, Emf error, pel error, w0 error, and old interpolation) and
corrected code at 100 g/cm2 of aluminum and water exposed to the August 1972 King SPE and 1977 solar
minimum GCR environments. The data are given in Table 2. First, note that the SPE data in aluminum and
GCR data in aluminum and water are surprisingly similar despite the individual effects of the errors shown
above. This would indicate that many of the errors are competing (ie. cancelling effects) and shows how
difficult these errors can be to find and correct. The large differences in the water target exposed to the SPE
are caused almost entirely by the pel error. The w0 error causes the code with errors to under-predict doses
in aluminum. The results in the water target exposed to the GCR show the combined effects of two errors.
While the pel error would cause an over-prediction, the w0 error causes an under-prediction, and the
combined effect is a result very near the corrected code. It should be noted that for different materials or
environments, the results are unpredictable.

Table 2. Dose at 100 g/cm2 in aluminum and water exposed to August 1972 King SPE and 1977 solar
minimum GCR. The units for the SPE results are cGy, and the units for the GCR results are cGy/day.

SPE	 GCR
Aluminum	 Water	 Aluminum	 Water

Corrected code	 3.28 x 10-1 	6.18 x 10-2	4.72 x 10-2	 3.78 x 10 -2

Code with Errors 	 3.21 x 10-1	1.27 x 10-1	4.22 x 10-2	3.77 x 10 -2

10. Convergence Study for Light Particle Transport in SPE Environments

In this section, the total discretization error associated with the old and new light particle transport
algorithms in HZETRN is examined by conducting a detailed convergence analysis in both step-size ( h)
and energy grid-size (N). For all comparisons, the round-off errors, coding mistakes, and interpolation
routines mentioned in the previous section have been fixed in the original algorithms. This will allow a
direct comparison between the original and updated numerical algorithms. The convergence analysis is
completed by transporting the August 1972 King SPE spectrum through 100 g/cm2 of aluminum and water.
Six different energy grids were used with minimum and maximum energy values of Emin = 0.01 AMeV and
Emax = 2500 AMeV. The grids were equally log spaced in energy and contained 100, 149, 223, 335, 502,
and 753 points; these grids will be referred to as E-100, E-149, E-223, E-335, E-502, and E-753. Each grid
represents a refinement of 1.5 in the grid spacing parameter,

log(Emax ) − log(E.)	
(109)ΔE 	

N-1

Thus, for N = 100, AE = 0.054525, and for N = 149, AE = 0.036473. Along with these different energy grids,
the following step-sizes (in g/cm2) were used to propagate the boundary condition into the slabs: h = 2- 1 ,
2-2 , 2 -3 ,...,2 -11 . Each step-size is a refinement of two in h. These eleven step-sizes, six energy grids, two
materials, and two transport algorithms, were used to obtain fluence, dose, and dose equivalent values at
various depths in the target media. These data are used to show that both algorithms converge as a function
of step-size and energy grid-size for SPE boundary conditions. It is also determined that the new algorithm
is more accurate than its predecessor. Finally, total discretization error estimates are given for the
discretization parameters (h = 0.5 g/cm2 with 100 energy grid points) commonly used in HZETRN. The
errors are expressed as percent difference from a highly accurate, or converged, numerical solution.

In Figures 11 and 12, dose equivalent as a function of depth in aluminum and water is given for
both of the algorithms and all of the discretization parameters. The plot legends have been removed
because there are 132 different curves (6 energy grids, 11 step-sizes, 2 algorithms), many of which are
overlapping. The spread in the data at 100 g/cm2 in aluminum is ~3 cSv (~39%), and the spread in the data
at 100 g/cm2 in water is ~0.2 cSv (~26%). It is clear in these plots that both methods, with the various
discretization parameters, produce similar results and that the errors appear to be slowly increasing as a
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function of depth in the material. Slightly larger errors are also found in aluminum. These errors will be
discussed in detail later.

In Figures 13 and 14, the dose equivalent at 100 g/cm2 in aluminum and water is plotted as a
function of the energy grid-size, N, for three step-sizes. The three step-sizes were chosen to reduce data
overlap and improve plot clarity. In Figures 15 and 16, the dose equivalent at 100 g/cm 2 in aluminum and
water is plotted as a function of the step-size, h, for all of the energy grids. Figures 13-16 show that both of
the algorithms reach an asymptotic solution for step-sizes less than 0.01 g/cm 2 and energy grids with
greater than 300 points. The use of step-sizes larger than 0.01 g/cm 2 results in a systematic under-prediction
of dose equivalent regardless of the method or energy grid used. It is also clear that if larger energy grids
and smaller step-sizes were considered, the methods would generate almost identical solutions. The percent
difference between the dose equivalent values generated by the old and new algorithms with the finest
discretization parameters (h = 2-11 , N = 753) is 0.4% at 100 g/cm2 in aluminum and 0.2% at 100 g/cm2 in
water. Thus, it is concluded that both methods converge to the same value as a function of step-size and
energy grids size to the same solution for this SPE in aluminum and water.

Figures 15-16 indicate that there is little difference in spatial discretization error between the old
and new algorithms. This is expected since the only difference between the algorithms is in the calculation
of the source integral over energy. The new method appears to have a smaller energy discretization error in
aluminum. This can be quantified by computing the percent difference between the E-100 and E-753 dose
equivalent results from both algorithms with a step-size of h = 2-11 g/cm2 at 100 g/cm2. The percent
difference between the E-100 and E-753 results for the old algorithm is 10.7% in aluminum and 2.4% in
water, while the percent difference between the E-100 and E-753 results for the new algorithm is 2.5% in
aluminum and 2.6% in water. The improvement in aluminum was achieved primarily because the new
algorithm more accurately handles the sharply peaked production cross sections in aluminum, especially
the neutron elastic cross sections that are important at large depths. The negligible accuracy loss in water
shows that the methods are comparable when the production cross sections are relatively smooth, as is the
case when hydrogen is present.

Figure 11. Dose equivalent versus depth in aluminum exposed to the August 1972 King SPE computed
with both transport algorithms and all discretization parameters.
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Figure 12. Dose equivalent versus depth in water exposed to the August 1972 King SPE computed with
both transport algorithms and all discretization parameters.

Figure 13. Dose equivalent versus energy grid-size at 100 g/cm 2 in aluminum exposed to the August 1972
King SPE. Both transport algorithms were used with three different step-sizes.
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Figure 14. Dose equivalent versus energy grid-size at 100 g/cm 2 in water exposed to the August 1972 King
SPE. Both transport algorithms were used with three different step-sizes.

Figure 15. Dose equivalent versus step-size at 100 g/cm2 in aluminum exposed to the August 1972 King
SPE. Both transport algorithms were used with six different energy grids.
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Figure 16. Dose equivalent versus step-size at 100 g/cm 2 in water exposed to the August 1972 King SPE.
Both transport algorithms were used with six different energy grids.

While one would like to use the fully converged results in all future applications, the fine
discretization parameters result in a very inefficient algorithm that would be impractical in most
applications. Thus, a smaller grid and larger step-size is chosen, and the results generated with these coarse
discretization parameters must be compared to the converged results to quantify the discretization error. As
stated previously, HZETRN is commonly run with 100 energy grid points and a step-size of 0.5 g/cm2.
Therefore, h = 0.5 g/cm2 and N = 100 are chosen as the coarse discretization parameters. Define the
converged solution as the results obtained with the new method using 753 energy grid points and a step-
size of 2-11 g/cm2. This approximation is justified in Figures 13-16 where it appears that both methods are
asymptotically approaching a common solution. It is also important to note that the difference between the
methods with the fine discretization parameters is very small. The discretization error is expressed as the
percent difference between the results obtained with the coarse parameters and the converged solution. The
results are given in Figures 17 and 18. The new algorithm has a lower discretization error than the old
algorithm out to 100 g/cm2. Figures 17 and 18 also show that characteristically different errors are
generated in aluminum and water targets. The data represented in Figures 17 and 18 are also given in Table
3 so that the exact numbers are clearly documented. Table 4 gives the error estimates for dose values.

Notice that in Figures 17 and 18, there is a slight bend in the error curves near 40 g/cm 2. This bend
is the approximate depth at which the contribution to dose equivalent by the primary protons is overtaken
by the contribution from secondary neutrons and charged target fragments, as shown in Figures 19 and 20.
In aluminum, the error curve continues to increase past the bend, while in water, the error curve decreases
past the bend. This is due to the number and energy of secondary neutrons and charged target fragments
produced in each material. In aluminum, there are a moderate number of neutrons produced as a result of
nuclear collisions between the primary protons and target media, and the many elastic collisions which
dominate neutron transport result in only small energy transfers (compared to neutron collisions with
hydrogen atoms in water).
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Figure 17. Discretization error for dose equivalent as a function of depth for the light particle transport
algorithms in aluminum exposed to the August 1972 King SPE.

Figure 18. Discretization error for dose equivalent as a function of depth for the light particle transport
algorithms in water exposed to the August 1972 King SPE.
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Table 3. Discretization error (%) for dose equivalent computed with the old and new light particle transport
algorithms at various depths in aluminum and water exposed to the August 1972 King SPE. Significant
figures shown to clarify magnitudes.

Depth (g/cm2)
Old

Aluminum
New Old

Water
New

1.0 0.48 0.49 0.57 0.61
5.0 0.08 0.10 0.95 0.97

10.0 0.71 0.63 2.23 2.14
25.0 10.10 8.94 15.24 14.01
50.0 23.40 18.77 23.83 20.73
75.0 27.42 20.18 22.43 18.65

100.0 31.48 21.82 20.80 16.67

Table 4. Discretization error (%) for dose computed with the old and new light particle transport algorithms
at various depths in aluminum and water exposed to the August 1972 King SPE. Significant figures shown
to clarify magnitudes.

Depth (g/cm2)
Old

Aluminum
New Old

Water
New

1.0 0.09 0.79 0.31 0.37
5.0 0.03 0.04 0.38 0.44

10.0 0.11 0.11 0.49 0.51
25.0 1.63 1.45 2.93 2.71
50.0 17.49 14.56 15.43 13.65
75.0 26.53 20.33 16.20 13.53

100.0 30.54 22.04 14.51 11.46

Thus, the secondary neutrons are left with sufficient energy to continue producing charged target fragments
well past 40 g/cm2. Conversely, in water, there are far fewer neutrons produced, and the elastic collisions
result in much larger energy transfers that render many of the neutrons incapable of producing further
target fragments. It is important to note that the error curves in Figure 17 do not grow without bound; they
reach a maximum of about 75% near 725 g/cm2 and then decline rapidly as the remaining neutrons have
insufficient energy to produce any further target fragments. Error estimates for material thicknesses greater
than 100 g/cm2 are computationally expensive due to the long run-times associated with fine discretization
parameters and large depths. This topic will be investigated in future work.

As stated previously, it is clear in Figures 15 and 16 that both methods, for a given energy grid,
systematically under-predict dose equivalent values if step-sizes larger than 0.01 g/cm2 are used. It is now
shown that these step-sizes, including the coarse discretization parameter, h = 0.5 g/cm2, commonly used in
HZETRN, result in a systematic under-prediction of secondary target fragments, and that this under-
prediction is the dominant source of error shown in Figures 17 and 18.
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Figure 19. Dose equivalent by particle type using the converged results at 100 g/cm 2 in aluminum exposed
to the August 1972 King SPE.
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Figure 20. Dose equivalent by particle type using the converged results at 100 g/cm 2 in water exposed to
the August 1972 King SPE.
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Recall from Section 5 that two convergence criteria were identified in developing numerical
procedures for the light particle transport equation, namely that

h « - ,	 (110)
σj (r)

and

h « rj .	 (111)

The first criterion (step-size much smaller than the nuclear mean free path) is trivially satisfied since
nuclear mean free path lengths are typically on the order of many cm, but the second criterion (step-size
much smaller than the range), which has been derived in the present work, is not satisfied for low energy
particles unless h is taken several orders of magnitude below 0.5 g/cm2 .

To show the error induced by choosing discretization parameters that violate equation (111), a
portion of the convergence test outlined previously is re-run with the minimum energy increased to 50
AMeV. This energy was chosen because 50 MeV protons have a range —2.9 g/cm 2, which should allow
step-sizes of 0.5 g/cm2 to be used with only minimal error. Since the systematic under-prediction has been
shown to be independent of the numerical algorithm, only the new light particle transport equation was
used. Also, since the error was most prevalent in aluminum, the water target was not considered. For this
comparison, define the modified converged solution as the results generated by the new method with a
step-size of 2 -11 g/cm2 and the 753 point modified energy grid (Emin = 50 AMeV instead of 0.01 AMeV).
The results generated by the new method using a step-size of 0.5 g/cm2 and the modified 100 point energy
grid will be compared to the modified converged results. The error comparisons are given in Figure 21
along with the previous error curve shown in Figure 17. It is clear that neglecting the target fragments with
energy less than 50 AMeV significantly reduces the discretization error in the light particle transport
algorithm. The new error curve has a maximum of —0.07% near 30 g/cm 2 of aluminum.

Figure 21. Discretization error (%) caused by target fragments with energy less than 50 AMeV in
aluminum exposed to the August 1972 King SPE.
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11. Convergence Study for HZETRN in GCR Environments

For GCR environments, the primary spectrum is composed of protons, 4He, and 26 heavy ions
with energies extending up to 50 AGeV. In HZETRN, the heavy ion transport algorithm is used to transport
the 26 heavy ions along with their secondary fragments through the target media, and the light particle
transport algorithm is used to transport the primary protons and 4He along with the light projectile and
target fragments. The light projectile fragments produced from the heavy ions are also included in the light
particle transport algorithm. A convergence analysis has never been done, to our knowledge, for the heavy
ion or light particle transport algorithms in GCR environments. The convergence analysis described in the
previous section is repeated for the heavy ion and light particle transport algorithms for GCR boundary
conditions.

In this section, the total discretization error associated with the heavy ion transport algorithm and
the old and new light particle transport algorithms in HZETRN is examined by conducting a detailed
convergence analysis in both step-size, h, and energy grid-size, N. For all comparisons, the round-off
errors, coding mistakes, and interpolation routines mentioned in the previous section have been fixed in the
original algorithms. This will allow a direct comparison between the original and updated numerical
algorithms. The convergence analysis is identical to the one in Section 10 except that 1977 solar minimum
GCR environment is used, and the maximum energy is increased to Emax = 50 AGeV. The same step-sizes
and energy grid-sizes are used. It is first shown that the heavy ion transport algorithm converges as a
function of step-size and energy grid-size. The discretization error associated with the heavy ion transport
algorithm for the discretization parameters ( h = 0.5 g/cm2 with 100 energy grid points) commonly used in
HZETRN is also given. Next, the two light particle transport algorithms are compared. The new algorithm
is shown to converge as a function of step-size and energy grid-size. It is also determined that the old
algorithm converges as a function of step-size, but that larger energy grids are required to determine if the
old algorithm converges as a function of energy grid-size. Finally, total discretization error estimates are
given for discretization parameters commonly used in HZETRN. The errors are expressed as percent
difference from a converged numerical solution.

In Figures 22 and 23, dose equivalent as a function of depth in aluminum and water is given for
the heavy ion transport algorithm coupled to both of the light particle transport algorithms and all of the
discretization parameters. The plot legends have been removed because there are 132 different curves,
many of which are overlapping. The spread in the data at 100 g/cm2 in aluminum is ~0.024 cSv/day
(~17%), and the spread in the data at 100 g/cm 2 in water is ~0.013 cSv/day (~15%). As before, both
methods with the various discretization parameters produce similar results, and the errors appear to be
slowly increasing as a function of depth in the material. Slightly larger errors are once again found in
aluminum. In Figures 24 and 25, the contribution to dose equivalent from heavy ions at 100 g/cm 2 in
aluminum and water is plotted as a function of the energy grid-size, N, for five step-sizes. The step-sizes
were chosen to reduce data overlap and improve plot clarity. In Figures 26 and 27, the contribution to dose
equivalent from heavy ions at 100 g/cm2 in aluminum and water is plotted as a function of the step-size, h,
for all of the energy grids. Figures 24-27 clearly show that the heavy ion marching algorithm reaches an
asymptotic solution for step-sizes less than 0.01 g/cm2 and energy grids with greater than 250 points. It is
concluded that the heavy ion transport algorithm converges as a function of step-size and energy grid-size.

In order to quantify the discretization error associated with the heavy ion transport algorithm,
consider the contribution to dose equivalent from heavy ions only and define the converged heavy ion
solution as the results obtained using 753 energy grid points and a step-size of 2 -11 g/cm2. The step-size, h =
0.5 g/cm2, and energy grid-size, N = 100, are once again chosen as the coarse discretization parameters.
The discretization error is expressed as the percent difference between the results generated with the coarse
parameters and the converged solution. To be clear, these discretization error estimates were obtained using
only the heavy ion contribution to dose equivalent. Thus, the error caused by the light particle transport
algorithm is not included here. The results are shown in Figure 28 and 29 for the aluminum and water
targets. The discretization errors are bounded over the depths shown by 0.3% in aluminum and 1.1% in
water. Future work will focus on quantifying the discretization error depths greater than 100 g/cm 2. The
data represented in Figures 17 and 18 are also given in Table 5 so that the exact numbers are clearly
documented. Table 6 gives the error estimates for dose values.
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Figure 22. Dose equivalent versus depth in aluminum exposed to the 1977 solar minimum GCR computed
with both transport algorithms and all discretization parameters.

Figure 23. Dose equivalent versus depth in water exposed to the 1977 solar minimum GCR computed with
both transport algorithms and all discretization parameters.
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Figure 24. Dose equivalent from heavy ions versus energy grid-size at 100 g/cm 2 in aluminum exposed to
the 1977 solar minimum GCR environment. Five different steps-sizes were used.

Figure 25. Dose equivalent from heavy ions versus energy grid-size at 100 g/cm 2 in water exposed to the
1977 solar minimum GCR environment. Five different steps-sizes were used.
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Figure 26. Dose equivalent from heavy ions versus step-size at 100 g/cm 2 in aluminum exposed to the 1977
solar minimum GCR environment. All of the different energy grids were used.

Figure 27. Dose equivalent from heavy ions versus step-size at 100 g/cm 2 in water exposed to the 1977
solar minimum GCR environment. All of the different energy grids were used.
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Figure 28. Discretization error for dose equivalent as a function of depth for the heavy ion transport
algorithm in aluminum exposed to the 1977 solar minimum GCR environment. White space included so

vertical axis matches Figure 29.

Figure 29. Discretization error for dose equivalent as a function of depth for the heavy ion transport
algorithm in aluminum exposed to the 1977 solar minimum GCR environment.
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Table 5. Discretization error (%) for the heavy ion contribution to dose equivalent computed with the heavy
ion transport algorithm at various depths in aluminum and water exposed to the 1977 solar minimum GCR.
Significant figures shown to clarify magnitudes.

Depth (g/cm2) Aluminum Water
1.0 0.0026 0.037
5.0 0.024 0.18

10.0 0.045 0.32
25.0 0.090 0.61
50.0 0.15 0.84
75.0 0.21 0.95

100.0 0.25 1.01

Table 6. Discretization error (%) for the heavy ion contribution to dose computed with the heavy ion
transport algorithm at various depths in aluminum and water exposed to the 1977 solar minimum GCR.
Significant figures shown to clarify magnitudes.

Depth (g/cm2) Aluminum Water
1.0 0.000327 0.020
5.0 0.017 0.13

10.0 0.035 0.23
25.0 0.070 0.43
50.0 0.12 0.61
75.0 0.16 0.73

100.0 0.20 0.82

In Figures 30 and 31, dose equivalent at 100 g/cm 2 in aluminum and water is plotted as a function
of the energy grid-size, N, for three step-sizes. The step-sizes were chosen to reduce data overlap and
improve plot clarity. In Figures 32 and 33, dose equivalent at 100 g/cm 2 in aluminum and water is plotted
as a function of the step-size, h, for all of the energy grids. Figures 30-33 clearly show that the new light
particle transport algorithm coupled to the heavy ion transport algorithm reaches an asymptotic solution for
step-sizes less than 0.01 g/cm2 and energy grids with greater than 300 points. It is concluded that the new
light particle transport algorithm converges as a function of step-size and energy grid-size. Conversely,
while the old algorithm appears to converge as a function of step-size, it has not converged as a function of
energy grid-size if 753 grid points are used. This does not mean that the old algorithm will not converge.
All that can be said is that an asymptotic solution is not achieved by the old algorithm if as many as 753
energy grid points are used. This would indicate that the new method is more accurate and converges faster
as a function of energy grid-size.

In order to quantify the discretization error associated with the algorithms, define the converged
solution as the results obtained with the new light particle transport algorithm (coupled to the heavy ion
algorithm) using 753 energy grid points and a step-size of 2 -11 g/cm2. The step-size, h = 0.5 g/cm2, and
energy grid-size, N = 100, are once again chosen as the coarse discretization parameters. The discretization
error is expressed as the percent difference between the results generated with the coarse parameters and
the converged solution. These error estimates were obtained using total exposure quantities (heavy ions and
light particles included), thus the discretization error from the heavy ion transport algorithm, though small,
is included. The results are shown in Figure 34 and 35 for the aluminum and water targets. The
discretization errors are bounded over the depths shown by 6.5% in aluminum and 3.9% in water. The
errors shown for the old method are misleadingly small. First, recall that the old method has not reached an
asymptotic solution if 753 energy grid points are used; thus, it converges more slowly than the new
algorithm as a function of energy grid-size. Second, the errors reported here are dependent on the choice of
the converged solution. In this case, the energy discretization error and the spatial discretization error in the
old algorithm are competing errors and therefore produce misleading error estimates when compared to a
converged solution.
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Figure 30. Dose equivalent versus energy grid-size at 100 g/cm 2 in aluminum exposed to the 1977 solar
minimum GCR environment. Both transport algorithms were used with three different step-sizes.

Figure 31. Dose equivalent versus energy grid-size at 100 g/cm 2 in aluminum exposed to the 1977 solar
minimum GCR environment. Both transport algorithms were used with three different step-sizes.
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Figure 32. Dose equivalent versus step-size at 100 g/cm 2 in aluminum exposed to the 1977 solar minimum
GCR environment. Both transport algorithms were used with six different energy grids.

Figure 33. Dose equivalent versus step-size at 100 g/cm 2 in aluminum exposed to the 1977 solar minimum
GCR environment. Both transport algorithms were used with six different energy grids.
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Figure 34. Discretization error (%) for dose equivalent as a function of depth for both algorithms in
aluminum exposed to the 1977 solar minimum GCR environment.

Figure 35. Discretization error (%) for dose equivalent as a function of depth for both algorithms in water
exposed to the 1977 solar minimum GCR environment.
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As before, the errors are slowly increasing as a function of depth in the material, and it is expected that
these errors will reach a maximum after the majority of the primary ions and secondary projectile
fragments have come to rest. Future work will focus on quantifying the discretization error depths greater
than 100 g/cm2. The data represented in Figures 34 and 35 is also given in Tables 7. Table 8 gives the error
estimates for dose.

Table 7. Total discretization error (%) for dose equivalent computed with both algorithms at various depths
in aluminum and water exposed to the 1977 solar minimum GCR. Significant figures shown to clarify
magnitudes.

Depth Aluminum Water
(g/cm2) Old New Old New

1.0 0.13 0.12 0.17 0.17
5.0 0.15 0.28 0.31 0.47

10.0 0.14 0.52 0.39 0.84
25.0 0.07 1.46 0.37 1.88
50.0 0.40 3.27 0.28 3.03
75.0 1.37 4.96 0.63 3.62

100.0 2.92 6.47 1.42 3.97

Table 8. Total discretization error (%) for dose computed with both algorithms at various depths in
aluminum and water exposed to the 1977 solar minimum GCR. Significant figures shown to clarify
magnitudes.

Depth Aluminum Water
(g/cm2) Old New Old New

1.0 0.04 0.07 0.07 0.11
5.0 0.16 0.12 0.10 0.24

10.0 0.48 0.18 0.41 0.33
25.0 1.53 0.32 1.36 0.46
50.0 3.09 0.56 2.49 0.55
75.0 4.25 0.83 2.80 0.56

100.0 4.91 1.11 2.39 0.53

12. Run Time Comparisons

In this section, the run-times of the old and new transport algorithms are compared for three
applications in which HZETRN is commonly used. All simulations were run on a Dell with 4 quad-core
AMD Opteron Processor 8356 chips and 131 GB of memory. The discretization parameters used in each
case where h = 0.5 g/cm2 and 100 energy grid points. The simplest of the three applications would be to
use HZETRN to compute flux/fluence, dose, or dose equivalent as a function of depth in a single layer of
some material. This type of calculation might be done to analyze the radiation protection properties of a
slab of some material or to generate a simplified interpolation database. In this case, consider separately
aluminum exposed to the August 1972 King SPE and the 1977 solar minimum GCR spectrum. For the SPE
environment, results are stored at 21 depths from 0.0 g/cm 2 to 100.0 g/cm2. For the GCR environment,
results are stored at 11 depths from 0.0 g/cm 2 to 100.0 g/cm2. The difference in the number of depths has
been discussed by Anderson et al. [2007] and is related to the rapid decline of the SPE dosimetric quantities
over the first few g/cm2 of shielding. The run-times are given in Table 9. The next application is a two-
layer simulation in which results are stored on a two dimensional grid of points covering every combination
of first layer thicknesses followed by second layer thicknesses. In this case, consider a first layer of
aluminum followed by a second layer of water. This simulation is typically used to model a shielding
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structure (aluminum) surrounding a human phantom (water). The spatial grids mentioned above for the
SPE and GCR environments are used in this application. The run-times are given in Table 10. The final
application is a three-layer simulation in which results are stored on a three dimensional grid of points
covering every combination of first, second, and third layer thicknesses. In this case, consider a first layer
of aluminum, a second layer of polyethylene, and a third layer of water. This simulation is typically used
to model a shielding structure (aluminum) with a secondary shield (polyethylene) surrounding a human
phantom (water). The spatial grids mentioned above for the SPE and GCR environments are used in this
application. The run-times are given in Table 11.

Table 9. Single layer run time comparisons for old and new algorithms in SPE and GCR environments. The
reduction factor is the ratio of the old method run-time to the new method run-time.

SPE time (sec) GCR time (sec)
Old Method	 62.0
New Method	 0.7

77.0
9.0

Reduction Factor	 88.5 8.5

Table 10. Two layer run time comparisons for old and new algorithms in SPE and GCR environments. The
reduction factor is the ratio of the old method run-time to the new method run-time.

SPE time (sec) GCR time (sec)
Old Method	 1272
New Method	 15

926
108

Reduction Factor	 85 9

Table 11. Three layer run time comparisons for old and new algorithms in SPE and GCR environments.
The reduction factor is the ratio of the old method run-time to the new method run-time.

SPE time (min) GCR time (min)
Old Method	 440
New Method	 5

173
21

Reduction Factor	 88 8

The run-times in Tables 9-11 show that the new method is much faster than the old method in both
SPE and GCR environments. The new method is nearly 90 times faster for SPE simulations and nearly 10
times faster for GCR simulations. It should be noted that run-times in the old method are dependent on the
atomic complexity of the target material. For targets with many atomic species, the cross sections computed
within the transport procedure will require more time and therefore slow the transport procedure. However,
in the new method, cross sections are pre-computed, and therefore, increased atomic complexity does not
affect the run times. Since the materials considered here had at most two atomic species (water,
polyethylene), the run times for the old method and reduction factors are both conservative.

13. Conclusions and Future Work

In this paper, a detailed derivation of the numerical marching algorithms used for light particles
and heavy ions in HZETRN was given. Components of the derivation that were previously absent in the
documentation were discussed in detail. This work serves as a complete set of documentation for the old
and new numerical methods used in the straight ahead transport procedures in HZETRN. A new numerical
method was presented for the light particle transport algorithm. The primary differences between the old
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and new algorithms were summarized in process description charts and tables. In general, the new method
requires fewer interpolations per step.

The impact of single precision round-off error and various coding errors on code stability and
accuracy was discussed. Round-off error was shown to be problematic for some of the light particle
production cross sections. These errors produce discontinuities in the high energy portion of secondary
light particle fluence spectra. Three coding errors related to the light particle production cross sections were
discussed, and the individual and combined effect of the errors on fluence spectra was shown. A new
interpolation routine used in both the heavy ion and light particle transport algorithm was presented, and
the improved efficiency and robustness of the routine was demonstrated.

A convergence study was conducted to determine if the old and new algorithms converge as a
function of step-size and energy grid-size and to quantify the discretization error associated with both
algorithms. The old and new algorithms were shown to converge to the same result for the SPE
environment, and the improved accuracy of the new method was quantified. Total discretization error on
dose equivalent at 100 g/cm2 was reduced from 31% to 21% in aluminum and from 20% to 15% in water
for commonly used energy grids. For the GCR environment, the heavy ion transport algorithm was first
shown to converge as a function of step-size and energy grid-size, and discretization error estimates were
bounded over the depths shown by approximately 1% at 100 g/cm 2 in aluminum and water. The new light
particle transport algorithm was also shown to converge as a function of step-size and energy grid-size. The
old algorithm was shown to converge as a function of step-size, and it was concluded that energy grids with
more than 753 points are required to show convergence in the energy domain. This indicates that the new
method converges faster and is more accurate in GCR environments. Total discretization error on dose
equivalent at 100 g/cm2 was 6% in aluminum and 4% in water for the new method.

The importance of low energy target fragments on discretization error was clearly shown by
neglecting all particles with energy less than 50 AMeV in the transport procedure. The error estimates for
the cut-off energy grid were negligible compared to the full energy grid. This indicates that the dominant
source of discretization error in HZETRN is caused by low energy target fragmentation. Further, to the
author's knowledge, only the convergence criterion in equation (110) (step-size smaller than the nuclear
mean free path length) has been addressed in the literature. The second convergence criterion in equation
(111) (step-size smaller than the fragment range), found here in the derivation of the numerical procedures,
has never been explicitly written until now. This work definitively shows the presence of two convergence
criteria, and that previous convergence studies never addressed the second criterion.

Run time comparisons between the old and new algorithms showed large improvements for three
applications in which HZETRN is commonly used. The new algorithm was found to be approximately 90
times faster for SPE simulations and approximately 10 times faster for GCR simulations. The new
algorithms will be implemented in all future versions of HZETRN.

Future work should focus on further reducing discretization error in HZETRN by developing more
robust methods for handling the transport of low energy target fragments. While physics modeling errors
associated with the straight ahead approximation may exceed the current numerical error at depths past 100
g/cm2, there is still a need to reduce the numerical error as long as the current model is used in studies with
such large material depths (atmosphere, lunar surface, martian surface, etc.).
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16. Appendix A – Inversion of Light Particle Transport Equation

In this section, the scaled light particle transport equation (equation (23) in Section 3)

∂ 	 ∂
∂x − 

vj ∂r + 
aj (r

), j 
(x, r) 

= ∑ v
j

 ∫r

∞
 
sjk (r, r' )'Nk (x, r') dr' , 	 (112)

k k

is inverted to obtain a Volterra type integral equation.
For light ions only (neutrons will be handled separately later), define the characteristic variables

77j ≡ r − vjx,	 (113)

and

Cj ≡ r + vjx ,	 (114)

The differentials with respect to x and r on the left hand side of the light particle transport equation are
transformed as

∂ 	 ∂ ∂77j 	 ∂ ∂Cj ⎜ ∂
−
 ∂ 	

(115)
∂x = ∂77j ∂x + ∂Cj ∂x

 = vj ⎜⎜ ∂Cj ∂77j ⎠

and

	

∂∂ ∂77j
+
 ∂ ∂Cj = ∂ + ∂ . 	 (116)

∂r ∂77j ∂ r ∂Cj ∂r 	 ∂Cj ∂77j

If we define the following quantities in terms of the characteristic variables

xj ( 77j , Cj ) ≡ 'Nj (x , r),	 (117)

âj (77j , Cj ) ≡ aj (r),	 (118)

and

v ∞
Gj (77j , Cj )≡ ∑

 k 
∫r

sjk (r , r' )'Nk (x , r' ) dr ' , 	 (119)
v

the light particle transport equation can be written as

∂
	 −xj(77j,Cj) 	 1 aj ( 77j , Cj )xj ( 77j , Cj ) = 	 1 Gj ( 77j , Cj ), 	 (120)

∂77j 	 2vj 	 2vj

where the division by vj is well defined since vj > 0 for charged particles. Equation (120) can be solved

using the integrating factor
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Nj ( 77j , Cj ) ≡ 1 f 
77j

orj (77' , Cj ) d77' , 	 (121)
2vj '710

where 770 is a free parameter to be chosen later. Equation (120) is now simplified as

∂ ⎡ e !̂; ( 77; , C; )	 ^ ) ⎤ =_ 1 e 4j (77j "j )
Gj (77j , Cj ) , 	 (122)

^j∂ 
`	 X

j
( 77

j
, 	 J	 2v 

j

which can be inverted by integrating from 770 to 77j . This integration produces

//	 tt	 l̂j
(77

j "j)	 (/	 tt − 1 ∫ 
77j ^ (77 , Cj ) −# ( 77' , C

j
)	 / 1 C )	 ' 	 (123)Xj l77j , Sj ) = e	 Xj l770 , Sj )	 e	 G

j
(77 j d77

2vj 
770

This equation must now be transformed back into the original variables (x, r) . The kernel,

Gj (77', Cj ) , is expressed in terms of the original variables by noting that

/ 
C
	 − 77

	

G j (77 , j) = ∑: ∫C + 77 ' s
jk 

Cj 
+77 , r ' ⎟ Ok 	 , r ' ⎟ dr'

k 
v

k
	

2
⎝ 2	 2v

j (124)
_	 vj ^	 ( r + v

j
x +77 ' 1 ⎜ r + vjx − 77

 '	 '
— ^ v

k
 
fLl 77 ' s

jk ⎜⎝ 	 2	
, r

 ' J ^k ⎜ 2v .	
, r ⎟ dr

7

Since the fluence at x = 0 is known (see the boundary condition in equation (3)), select the free parameter

770 = Cj to obtain

⎛ − 	 + ⎞C 77 C 77
Xj ( 770 , Cj ) = Oj ⎜ 2v . 	 2 ⎟⎟ = wj (0, Cj ) = ^1j (0, r + vjx) . 	 (125)

7

The integrating factor Qj (77j , Cj ) is expressed in terms of the original variables (x, r) by noting that

770 = Cj has already been chosen, so that

//j^ (/	 tt	
1 f 

77j 
Q (77', C) d77'

	

Nj l 77j , Sj )	
2vj
 

770 
jj

1	 ˆ
∫ 77j (77',orj 	Cj ) d77'

2vj 
Cj 	 (126)

1 f r − vjx 
or 

r + v .x + 77'
d7 ⎟ 77'

2vj r+ vjx ⎜ 2

=−f
x

0 
or (r + vj t ) dt .

Define

x
Oj (r , x ) ≡ f0 orj (r + vj t) dt.	 (127)
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The exponential terms appearing in the integrand of equation (123) can also be written in terms of the

original variables by again noting that 770 = gj has been chosen. In this case,

1	 177	 77 '

Âj (77j , j ) − Aj (77', gj )	
2vj gj

6j (77', j77
2vj gj

 
j (77	 j

1

f

⎛ r + vjx + 77 ''
1
 

d77 '' − 
1 r

77 ' 	 ^ r + vjx + 77' ' ⎞
d77''

2vj 
J r+ vjx 

aj ⎜ 2 	 2vj 
J r + vjx 

aj	 2 ⎟
(128)

0 

x 
aj (r + vj t)dt + ∫77 ' + vjx − r aj (r + vj t)dt

2vj

⎛ 77 '+ vjx − r 
⎟⎟= − A rj 

⎜⎜⎜⎜ ⎝ 	 ⎠⎟⎟⎟2vj

Then equation (123) can be written in terms of the original variables (x , r) as

Oj (x , r) = e
−Aj (r , x )

Oj (0, r + vjx)
⎛

− 
l 

77' + vjx − r l

1	
r	

1−
-^ vj 

('
r—vjz 

(r'
oo	 j	 2v.	 r + v. '

J	 J
r + v

j
x + 77 'e	 sjk	

x + 77 
r ' ⎟⎟ (129)

2v . k vk r+vjz	
2

⎝ 27
⎛ r + v .x −77 '

× Ok ⎜⎜
^ 	 , r ' ⎟⎟ dr ' d77 '.

2v ⎠⎟⎟
j

Let

	

77 ' = r − vjx + 2vjx ' ,	 (130)

then equation (129) becomes

Oj (x , r) = e
−Aj (r , x )

Oj (0, r + vjx)

	

'	 '

	

v
j
 

J '	
e
-

Aj (r , x ' )
sjk (r + vjx ', r ' )Ok (x − x', r') dr' dx'. 	

(131)

v 0 r+ vjz

At this time, return to equation (23) and seek to obtain a similar expression for neutrons. For
neutral particles, the continuous slowing down term is identically zero, and so the relevant transport
equation simplifies to

∂ 	 ⎤ 	 ∞

+ 
an (E ) ^ (x , r) = ∑ 

k 
∫r s

nk 
(r , r ' )Ok (x , r') dr' . 	 (132)

∂x

The integrating factor defined in equation (127) can be used to invert this equation. Note that for neutrons,
equation (127) takes the special form

An (r , x) = x an (r) .	 (133)

Equation (132) is expressed in terms of this integrating factor as
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∂∂x ⎣ 
On 

(x, r )e
x-n (r ) 

= ∑ v e
x

 
-n(r

)(' 
snk 

(r r' )Ok (x, r') dr' . 	 (134)
k	 k	 ,f r

Integrate this equation from the boundary at z = 0 to some arbitrary point in the material at z = x , then
equation (134) becomes

(x , r) = e
−x -n ( r) 

Oj
 (0, r) + ∑ 

1 (0x r∞ 
e-n (r ) (z − x ) snk (r, r ' )On (z, r') dr' dz . 	 (135)

k vk 
,J 0 J r

Now let

z ≡ x − x ',	 (136)

then equation (135) becomes

x ∞0,1
(
x, r) = ex 

-n (r )
(0, r) + ∑(' r e−-n( s

nk (r, r' )On (x − x', r') dr' dz . 	 (137)'N	 O	 vk
J 0 J r

Upon further inspection, if j = n in equation (131), then vn = 0, and equation (137) is

recovered. Therefore, the light particle transport equation can be completely expressed for neutrons and
light ions in terms of the Volterra type integral equation as

Oj (x , r) = e
−Qj (r , x )

Oj (0, r + vj
x)

v (' ('	 (138)k J 	' eQj(r , x ) sjk (r + vj
 x', r' )Ok

 (x − x', r') dr' dx' .
v 0

x J 
r +̂vjx

Equation (138) is the light particle Volterra type integral equation for which numerical procedures will be
developed.

17. Appendix B – Inversion of Heavy Ion Transport Equation

In this section, the scaled heavy ion transport equation (equation (38) in Section 4)

∂ 	 ∂ 	 ⎤ 	 v

∂x − vj ∂r + 
-j 

(r)
⎥ j (x, r) = ∑ 

v

j
 -jk (r )Ok (x, r ) , 	 (139)

k > j k

is inverted to obtain a Volterra type integral equation.
Define the characteristic variables

77j = r − vjx,	 (140)

and

ĵ = r + vjx ,	 (141)

along with the functions

xj (77j , ^j ) = Oj (x , r),	 (142)
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âj (77j , ^j ) = aj (r),	 (143)

and

a-jk (77j , ^j) = ajk (r),	 (144)

so that the differential operator on the left hand side of equation (139) transforms as in the previous section,
and one obtains

1	 1-

∂ 
Xj (77j , ^j) 2v aj (77j , ^j )Xj (77j , ^j ) = 

2v 
∑

v

vj

 '52v^
k )Xk (77k , ^k ) . 	 (145)

^jjj k > j k

Equation (145) can be solved using the integrating factor

Oj (77j , ^j ) ≡ 1 ∫ 
77j

aj (77' , ^j )d77 ' , 	 (146)
2vj 770

where 770 is a free parameter to be chosen later. Equation (145) is now simplified as

∂
⎢⎡ 

−O(" ,^) 	 t	 1 −O (" ,^)	
vj

 -	 t— 
`
e j j j Xj ( 77j , Sj ) , = − — e j j j 1: ajk (77k , Sk )Xk (77k , ^k ) , 	 (147)

∂77j `	 2vj
	 k > j vk

which can be inverted by integrating from 770 to 77j . This integration produces

^j ) = 
e4j (77j "j )	

1 ∑
vv 

j

'̂ 0
Xj

(77 lj
, 	 Xj

(770
, ^j ) − 2

v

j

e
Oj (77j

, ^j ) − Oj (77 ' , ^j ) Q
jk (77 ', 4 )Xk (77 ', ^k

) d77 '. 	 (148)
7
, k> j k

Since the fluence at x = 0 is known (see the boundary condition in equation (3)), we select the free

parameter 770 = ^j to obtain

⎛ − 	 + ⎞^ 77 ^ 77
Xj ( 770 , ^j ) = ̂ 1j ⎜⎜ 2v. ,	 2 ⎟⎟ = 

1̂j (0, ^j ) = 1̂j (0, r + vjx) . 	 (149)
7

The integrating factor Ôj (77j , ^j ) is expressed in terms of the original variables (x, r) by noting that

770 = ^j has already been chosen, so that
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1 ∫
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2vj 

77
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^ (^ ĵ)d

1 C

j

	'
2vj 

77 

.6j ( 77 I , Ej )d77

1	 'r-v .x ⎜ r + v .x + 77
= 
2vj 

fr
+ vjz 

orj	 2d 77'	 (150)

x
=− f0 orj (r + vj t )dt

=−Nj (r , x) .

The exponential terms appearing in the integrand of equation (148) can also be written in terms of the

original variables by again noting that 770 = Ej has been chosen. In this case,

Nj (77j , Ej ) − Nj (77' , Ej ) = 1 ∫ 
77
j

orj (77 '', Ej )d77 '' −1 ∫ orj (77'' , E)d77''
2vj Ej 	 2vj 

Ej

1	 v	 r + vjx + 77 '' ⎞ II — 1	
77 ' ⎛ r + vjx + 77' 	

''
2vj 

∫r+

r −

vjx

jx 
orj ⎜ 2
	 d77 	

2vj 
fr

+ vjxo
rj ⎜ 2
	 d77

(151)=
 − f

x

	

	 x
orj (r + vj t)dt + f77 ' + vjx −rorj (r + vj

t)dt
0

2vj

⎛ 77 '+ vjx − r

	

⎜⎜⎜⎜ ⎝ 	
⎟⎟= − N r

	

j	
⎠⎟⎟⎟2v

j

Then, equation (148) can be written in terms of the original variables as

Oj (x , r) = e
−Nj (r , x )

Oj (0, r + vjx )
⎛

V	
l
r' "

+ v
j
x − r

⎠1	 j
	 r-v 	 ^^jx 	 2vj

e 	 j

2vj k> j vk 
r + vjx

⎜ r + v
j
x

	

× 	 ⎜Ok ⎜⎜⎝ 2vj

⎜ ⎛
jk I 

r + vjx + 77 

J⎝ 1 	
(152)

2
77' r + vjx + 77 	 '
—,	 d77 .
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Define

77' ≡ r − vjx + 2vjx ' ,	 (153)

then, equation (152) becomes

Oj (x , r) = e 
Nj (r , x )

Oj (0, r + vjx )

v
+∑ j 

fo

x

	

(154)

v	

Nj (rx '
)or

jk 
(r + vjx ' )Ok (x − x ' , r + vjx ' )dx' .

k > j k

Equation (154) is the heavy ion Volterra type integral equation for which numerical procedures will be
developed.
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