16 research outputs found
DNA/BSA interaction of platinum(II) complexes with phenothiazine and N-methylphenothiazine
In the present study, the interactions of two platinum(II) complexes of the general formula cis-[PtCl2(L)(CH3CN)], L is phenothiazine (phtz, Pt1) and N-methylphenothiazine (NMephtz, Pt2) with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) were studied by fluorescence emission spectroscopy to check their binding affinity towards these biomolecules for possible insights into the mode of their biological activity. A remarkable decrease in BSA fluorescence intensity after the addition of the complexes Pt1 and Pt2 and high values of the binding constants are in accordance with their high affinity toward this protein. On the other hand, the low binding affinity of the studied platinum(II) complexes to ct-DNA-EthBr system (EthBr is ethidium bromide, a well-known DNA intercalator) was observed. This has indicated that proteins could be more favorable binding sites for these platinum(II) complexes in comparison to the nucleic acids. Interestingly, Pt1 complex has shown a higher binding affinity toward DNA than Pt2, while the latter complex is a more efficient BSA binder.Publishe
Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion
Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01–27.1 and 2.61–47.9 μM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1–3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied
Different coordination abilities of 1,7- and 4,7-phenanthroline in the reactions with copper(II) salts: Structural characterization and biological evaluation of the reaction products
The reactions between equimolar amounts of CuX2 (X = NO3− and CF3SO3−) and two aromatic nitrogen-containing heterocycles differing in the position of nitrogen atoms, 1,7- and 4,7-phenanthroline (1,7- and 4,7-phen), were performed in ethanol/methanol at room temperature. When CuX2 salts were mixed with 4,7-phen, two copper(II) complexes, [Cu(NO3)2(4,7-Hphen)2](NO3)2 (1) and [Cu(CF3SO3)(4,7- phen)2(H2O)2]CF3SO3 (2), were formed. On the other hand, in the reaction of CuX2 salts with 1,7-phen, only 1,7-HphenNO3 (3a/b) and 1,7-HphenCF3SO3 (4) were obtained as the final products. The obtained products 1–4 were characterized by spectroscopic and X-ray diffraction techniques. In the copper(II) complexes 1 and 2, the coordination geometry around the Cu(II) ion is distorted octahedral and square pyramidal, respectively. The antimicrobial potential of the copper(II) complexes 1 and 2 and corresponding compounds used for their synthesis were assessed against four different bacterial species and Candida albicans, displaying moderate growth inhibiting activity. The cytotoxic properties of the investigated complexes were also evaluated against the normal human lung fibroblast cell line (MRC-5) indicating moderate, yet more pronounced cytotoxicity than antimicrobial properties
Silver(I) and gold(III) complexes with miconazole: The influence of the metal ion on the antimicrobial activity of the coordinated azole
To develop a new antimicrobial agent, we used the clinically approved antifungal azole, miconazole (mcz), as a ligand for the synthesis of silver(I) and gold(III) complexes. The new complexes [Ag(NO3-O)(mcz-N)2] (1) and [AuCl3(mcz-N)] (2) were synthesized and characterized by 1H NMR, IR and UV–Vis spectroscopy and mass spectrometry, while the crystal structure of 1 was determined by single-crystal X-ray diffraction analysis. From the results obtained, it can be concluded that in both complexes, mcz is monodentately coordinated to the silver(I) and gold(III) ions through the imidazole nitrogen atom N3. In the solid state, complex 1 contains two mcz ligands and monodentately coordinated nitrate in the third position, while in the case of 2 gold(III) ion is coordinated by one mcz and three chlorido ligands, resulting in the expected square-planar arrangement around the metal center. DFT and TDDFT calculations were employed to elucidate the electronic structures and thermodynamic stability of the synthesized complexes in solution to complement the experimental findings. The coordination of mcz to silver(I) and gold(III) ions leads to an enhancement of its activity against Gram-negative Escherichia coli and Pseudomonas aeruginosa strains, while against the panel of Staphylococcus aureus and Candida species, only 2 shows improved activity compared to mcz. Both complexes 1 and 2 were tested in vitro for their antimycobacterial activity against the strain Mycobacterium tuberculosis H37Rv and showed good growth inhibition with minimum inhibitory concentration (MIC) values of 3.12 and 8.69 μM, respectively, with complex 1 being twice effective as mcz (MIC = 7.50 μM). Complex 2 significantly reduced the production of pyocyanin, a virulence factor in P. aeruginosa controlled by quorum sensing, while this effect was not observed for 1.The accepted, peer-reviewed version: [https://cer.ihtm.bg.ac.rs/handle/123456789/7899]The computational data: [https://doi.org/10.19061/iochem-bd-6-390
Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin
Three novel Zn(II) complexes, [ZnCl2(qz)(2)] (1), [ZnCl2(1,5-naph)](n) (2) and [ZnCl2(4,7-phen)(2)] (3), where qz is quinazoline, 1,5-naph is 1,5-naphthyridine and 4,7-phen is 4,7-phenanthroline, were synthesized by the reactions of ZnCl2 and the corresponding N-heterocyclic ligand in 1:2 molar ratio in ethanol at ambient temperature. The characterization of these complexes was done by NMR, IR and UV-Vis spectroscopy, and their crystal structures were determined by single-crystal X-ray diffraction analysis. Complexes 1 and 3 are mononuclear species, in which Zn(II) ion is tetrahedrally coordinated by two nitrogen atoms belonging to two qz or 4,7-phen ligands, respectively, and by two chloride anions, while complex 2 is a 1D coordination polymer that contains 1,5-naph as bridging ligand between two metal ions. In agar disc-diffusion assay, complexes 1-3 manifested good inhibitory activity against two investigated Candida strains (C. albicans and C. parapsilosis), while not inducing toxic effects on the healthy human fibroblast cell line (MRC-5). This activity was not fungicidal, as revealed by the broth microdilution assay, however complex 3 showed the ability to modulate Candida hyphae formation, which is an important process during infection and showed significant synergistic effect with clinically used antifungal polyene nystatin
Silver(I) complexes with 1,10-phenanthroline-based ligands: The influence of epoxide function on the complex structure and biological activity
In a continuing search for a novel metal-containing antimicrobial agents, the present study reports the synthesis, characterization and biological evaluation of two silver(I) complexes with 1,10-phenanthroline-based ligands, [Ag(1,10-phen)(2)]CF3COO center dot H2O (Ag1) and [Ag(CF3COO)(5,6-epoxy-1,10-phen)](2)(Ag2), 1,10-phen is 1, 10-phenanthroline and 5,6-epoxy-1,10-phen is 5,6-epoxy-5,6-dihydro-1,10-phenanthroline. The complexes were characterized by different spectroscopic techniques (IR, H-1 and C-13 NMR and UV-Vis), while the crystal structure of Ag2 complex was determined by a single-crystal X-ray diffraction analysis. The spectroscopic data confirmed that the structure of Ag1 complex, with silver(I) ion tetrahedrally coordinated by two bidentate 1, 10-phen ligands, is in accordance to the previous report (S.E. Paramonov et al., 2003). The crystallographic results showed that in dinuclear Ag2 complex, both Ag(I) ions are coordinated bidentately by 5,6-epoxy-1, 10-phen and monodentately by trifluoroacetate, with presence of the short Ag center dot center dot center dot Ag contact of 2.963 angstrom. Both silver (I) complexes were evaluated in vitro for antimicrobial activity against four bacterial and four Candida species, showing selectivity towards the investigated species of Candida with minimal inhibitory concentrations (MICs) between 0.9 and 12.5 mu M. Moreover, Ag2 complex manifested significant antiproliferative properties in the case of a range of human cell lines, including human breast cancer (MDA-MB 231), which resulted from the presence of epoxy functional group in the ligand. The gel electrophoresis results obtained from the studies of Ag1 and Ag2 interactions with bacteriophage lambda DNA (XDNA) suggested that these complexes did not cause DNA degradation
Copper(II) and zinc(II) complexes with the clinically used fluconazole
Copper(II) and zinc(II) complexes with clinically used antifungal drug fluconazole (fcz), {[CuCl(fcz)]·5HO}, 1, and {[ZnCl(fcz)]·2CHOH}, 2, were prepared and characterized by spectroscopic and crystallographic methods. The polymeric structure of the complexes comprises four fluconazole molecules monodentately coordinated via the triazole nitrogen and two chlorido ligands. With respect to fluconazole, complex 2 showed significantly higher antifungal activity against Candida krusei and Candida parapsilosis. All tested compounds reduced the total amount of ergosterol at subinhibitory concentrations, indicating that the mode of activity of fluconazole was retained within the complexes, which was corroborated via molecular docking with cytochrome P450 sterol 14α-demethylase (CYP51) as a target. Electrostatic, steric and internal energy interactions between the complexes and enzyme showed that 2 has higher binding potency to this target. Both complexes showed strong inhibition of C. albicans filamentation and biofilm formation at subinhibitory concentrations, with 2 being able to reduce the adherence of C. albicans to A549 cells in vitro. Complex 2 was able to reduce pyocyanin production in Pseudomonas aeruginosa between 10% and 25% and to inhibit its biofilm formation by 20% in comparison to the untreated control. These results suggest that complex 2 may be further examined in the mixed Candida-P. aeruginosa infections
Antimicrobial Activity and DNA/BSA Binding Affinity of Polynuclear Silver(I) Complexes with 1,2-Bis(4-pyridyl)ethane/ethene as Bridging Ligands
1,2-Bis(4-pyridyl)ethane (bpa) and 1,2-bis(4-pyridyl)ethene (bpe) were used for the synthesis of polynuclear silver(I) complexes, {[Ag(bpa)]NO3}n (1), {[Ag(bpa)2]CF3SO3.H2O}n (2) and {[Ag(bpe)]CF3SO3}n (3). In complexes 1–3, the corresponding nitrogen-containing heterocycle acts as a bridging ligand between two Ag(I) ions. In vitro antimicrobial activity of these complexes, along with the ligands used for their synthesis, was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi. The silver(I) complexes 1–3 showed selectivity towards Candida spp. and Gram-negative Escherichia coli in comparison to the other investigated bacterial strains, effectively inhibiting the growth of four different Candida species with minimal inhibitory concentrations (MICs) between 2.5 and 25 μg/mL and the growth of E. coli, with MIC value being 12.5 μg/mL. Importantly, complex 2 significantly reduced C. albicans filamentation, an essential process for its pathogenesis. Antiproliferative effect on the normal human lung fibroblast cell line MRC-5 was also evaluated with the aim of determining the therapeutic potential of the complexes 1–3. The interactions of these complexes with calf thymus DNA (ctDNA) and bovine serum albumin (BSA) were studied to evaluate their binding activities towards these biomolecules for possible insights on their mode of action
Silver(I) complexes with different pyridine-4,5-dicarboxylate ligands as efficient agents for the control of cow mastitis associated pathogens
Infections of the cow udder leading to mastitis and lower milk quality are one of the biggest problems in the dairy industry worldwide. Unfortunately, therapeutic options for the treatment of cow mastitis are limited as a consequence of the development of pathogens that are resistant to conventionally used antibiotics. In the search for agents that will be active against cow mastitis associated pathogens, in the present study, five new silver(I) complexes with different chelating pyridine-4,5-dicarboxylate types of ligands, [Ag(NO3)(py-2py)](n) (1), [Ag(NO3)(py-2metz)](n) (2), [Ag(CH3CN)(py-2py)]BF4 (3), [Ag(py-2tz)(2)]BF4 (4) and [Ag(py-2metz)(2)]BF4 (5), py-2py is dimethyl 2,2'-bipyridine-4,5-dicarboxylate, py-2metz is dimethyl 2-(4-methylthiazol-2-yl)pyridine-4,5-dicarboxylate and py-2tz is dimethyl 2-(thiazol-2-yl)pyridine-4,5-dicarboxylate, were synthesized, structurally characterized and assessed for in vitro antimicrobial activity using both standard bioassay and clinical isolates from a contaminated milk sample obtained from a cow with mastitis. These complexes showed remarkable activity against the standard panel of microorganisms and a selection of clinical isolates from the milk of the cow diagnosed with mastitis. With the aim of determining the therapeutic potential of silver(I) complexes, their toxicity in vivo against the model organism, Caenorhabditis elegans (C. elegans), was investigated. The complexes that had the best therapeutic profile, 2 and 5, induced bacterial membrane depolarization and the production of reactive oxygen species (ROS) in Candida albicans cells and inhibited the hyphae as well as the biofilm formation. Taken together, the presented data suggest that the silver(I) complexes with pyridine ligands could be considered for the treatment of microbial pathogens, which are causative agents of cow mastitis
Different coordination abilities of 1,7-and 4,7-phenanthroline in the reactions with copper(II) salts: Structural characterization and biological evaluation of the reaction products
The reactions between equimolar amounts of CuX2 (X = NO3- and CF3SO3-) and two aromatic nitrogen-containing heterocycles differing in the position of nitrogen atoms, 1,7- and 4,7-phenanthroline (1,7-and 4,7-phen), were performed in ethanol/methanol at room temperature. When CuX 2 salts were mixed with 4,7-phen, two copper(II) complexes, [Cu(NO3)(2)(4,7-Hphen)(2)](NO3)(2) (1) and [Cu(CF3SO3)(4,7-phen)(2)(H2O)(2)]CF3SO3 (2), were formed. On the other hand, in the reaction of CuX2 salts with 1,7-phen, only 1,7-HphenNO(3) (3a/b) and 1,7-HphenCF(3)SO(3) (4) were obtained as the final products. The obtained products 1-4 were characterized by spectroscopic and X-ray diffraction techniques. In the copper(II) complexes 1 and 2, the coordination geometry around the Cu(II) ion is distorted octahedral and square pyramidal, respectively. The antimicrobial potential of the copper(II) complexes 1 and 2 and corresponding compounds used for their synthesis were assessed against four different bacterial species and Candida albicans, displaying moderate growth inhibiting activity. The cytotoxic properties of the investigated complexes were also evaluated against the normal human lung fibroblast cell line (MRC-5) indicating moderate, yet more pronounced cytotoxicity than antimicrobial properties