17 research outputs found

    Mechanical properties, aging stability and translucency of speed-sintered zirconia for chairside restorations

    No full text
    OBJECTIVE: To evaluate the performance of zirconia ceramics sintered in a speed sintering induction furnace by comprehensive understanding of their optical and mechanical properties, microstructure, phase composition and aging stability, in comparison to ceramics sintered in a conventional furnace. METHODS: Speed sintered (SS) Katana STMLSS (Kuraray Noritake) (total thermal cycle/sintering time/dwell temperature: 30min/16min/1560°C) and CEREC Zirconia (CEREC ZrSS) (Dentsply Sirona) (15min/2min/1578°C) were compared to conventionally sintered (CS) Katana STMLCS (6.8h/2h/1550°C) and inCoris TZICS (4h/2h/1510°C). The translucency parameter (TP) and contrast ratio (CR) were measured with a spectrophotometer. The chemical composition of the materials was determined by XRF and phase composition was characterized using XRD. Hydrothermal aging behavior was evaluated by measuring the tetragonal-to-monoclinic ZrO2 phase transformation after accelerated hydrothermal aging in steam at 134°C. The indentation fracture toughness, Vickers hardness and biaxial strength of the sintered ceramics were assessed. RESULTS: Speed and conventionally sintered zirconia revealed similar density, microstructure, average strength and hydrothermal aging stability. Both Katana STMLSS/CS 5Y-PSZ ceramics were characterized with a higher content of cubic phase (≈53wt%), which resulted in a higher amount of Y2O3 in the remaining tetragonal ZrO2 phases compared to the 3Y-TZP CEREC ZrSS and inCoris TZICS (8 and 20wt%, respectively). The sintering program did not affect the hydrothermal aging behavior of Katana STMLSS and CEREC ZrSS. TP of Katana STMLSS (TP≈32) was not affected by speed sintering, while the translucency of CEREC ZrSS (TP=14) was significantly reduced. Hardness, fracture toughness and Weibull characteristic strength of Katana STMLSS and CEREC ZrSS also reached the optimal level, but speed sintering substantially lowered their mechanical reliability. SIGNIFICANCE: Speed sintering of 3Y-TZP and 5Y-PSZ in a speed sintering induction oven appeared suitable for clinical applications. However, further studies should focus on improving of translucency and mechanical reliability of the speed-sintered zirconia ceramics.status: publishe

    Cytotoxic and genotoxic potential of respirable fraction of composite dust on human bronchial cells

    No full text
    OBJECTIVE: To determine the cytotoxic and genotoxic potential of the respirable fraction of composite dust (<4 μm) on human bronchial epithelial cells. METHODS: Composite sticks of three commercial dental composites (Filtek Supreme XTE, Grandio, Transbond XT) were ground in an enclosed plexiglass chamber with a rough dental bur (grain-size 100 μm) and the generated airborne respirable dust was collected in a personal cyclone on a teflon filter (pore size 5 μm). Immediately after particle collection, the dust was quantified gravimetrically and the particles were suspended in cell culturing medium. Next, human bronchial epithelial cells (16HBE14o-) were exposed to the suspensions (3 μg/ml-400 μg/ml). After 24 h, cell viability (WST-1 assay) and membrane integrity (LDH assay) were evaluated. Furthermore, the genotoxic effect of a sub-cytotoxic concentration (50 μg/ml) of composite dust was evaluated by the comet assay after 3 h exposure and cell cycle disturbances were analyzed by flow cytometry. Cellular uptake of particles was evaluated by transmission electronic microscope (TEM). RESULTS: For all three tested composite materials, a decrease in metabolic activity of 10-35% was observed when the cells were exposed to the highest concentrations (100 μg/ml-400 μg/ml). Toxicity was partially linked to membrane disruption especially after 72 h exposure. All tested composites provoked a mild genotoxic effect after short-term exposure compared to the control groups. TEM revealed that respirable particles of all tested composites were taken up by the cells. SIGNIFICANCE: The respirable fraction of composite dust only showed cytotoxic effects at the highest concentrations, whereas mild genotoxicity was observed after exposure to a sub-cytotoxic concentration.status: publishe

    Release of monomers from composite dust

    No full text
    OBJECTIVES: Dental personnel are more at risk to develop asthmatic disease, but the exact reason is so far unknown. During abrasive procedures, dental personnel are exposed to nano-sized dust particles released from dental composite. The aim of this study was to investigate whether respirable composite dust may also release monomers. METHODS: Respirable (<5μm) composite dust was collected and the release of methacrylate monomers and Bisphenol A (BPA) in water and ethanol was evaluated by liquid chromatography/mass spectroscopy (LC-MS/MS). The dust was ultra-morphologically and chemically analyzed by transmission electron microscopy and energy-dispersive X-ray spectroscopy (TEM-EDS). RESULTS: LC-MS/MS analysis revealed that, irrespective of the type of composite, the respirable fraction of composite dust may release relatively high concentrations of unpolymerized methacrylate monomers, both in water and ethanol. Higher release was observed in ethanol. The endocrine disruptor BPA also emanated from the composite dust particles. TEM showed that most particles were nano-sized, although particle size ranged between 6nm and 5μm with a mode value between 12 and 39nm. Most particles consisted of several filler particles in resin matrix, although single nano-filler particles could also be observed. Elemental analysis by TEM-EDS proved that the particles collected on the filters originated from the dental composites. CONCLUSION: Theoretically, composite dust may function as a vehicle to transport monomers deeply into the respiratory system. The results of this study may shed another light on the increasing incidence of respiratory disease among dental personnel, and more care should be taken to prevent inhalation of composite dust. CLINICAL SIGNIFICANCE: Special care should be taken to prevent inhalation of composite dust, as the dust particles may release methacrylate monomers.publisher: Elsevier articletitle: Release of monomers from composite dust journaltitle: Journal of Dentistry articlelink: http://dx.doi.org/10.1016/j.jdent.2017.02.016 content_type: article copyright: © 2017 Elsevier Ltd. All rights reserved.status: publishe

    Distinct autophagy-apoptosis related pathways activated by Multi-walled (NM 400) and Single-walled carbon nanotubes (NIST-SRM2483) in human bronchial epithelial (16HBE14o-) cells

    No full text
    Given the recent development in the field of particle and fibre toxicology, parallels have been drawn between Carbon nanotubes (CNTs) and asbestos. It is now established that both multi-walled (MWCNTs) and single-walled (SWCNTs) carbon nanotubes might contribute to pulmonary disease. Although multiple mechanisms might be involved in CNT induced pathogenesis, systematic understanding of the relationship between different CNT exposure (MWCNT vs SWCNT) and autophagy/ apoptosis/ necrosis, in human lung epithelial cells remains limited. In this study, we demonstrate that exposure to MWCNT (NM-400), but not SWCNT (NIST-SRM2483), leads to an autophagic response after acute exposure (24 h). MWCNT exposure was characterized by an increase in anti-apoptotic BCL2, downregulation of executor Caspase-3/7 and increase in expression of genes from the autophagy machinery. For SWCNT exposure however, we observed an overexpression of executor Caspase-3/7 and upregulation of pro-apoptotic BAX; enrichment for processes like cornification, apoptotic process, cell differentiation from proteomic analysis. These results clearly indicate a major difference in the pathways initiated by the CNTs, in vitro. While the present study design provides mechanistic understanding after an acute exposure for the tested CNTs, we believe that the information obtained here would have relevance in better understanding of CNT toxicity and pathogenesis in general.status: publishe

    Interaction of rat alveolar macrophages with dental composite dust

    Get PDF
    Dental composites have become the standard filling material to restore teeth, but during the placement of these restorations, high amounts of respirable composite dust (<5 μm) including many nano-sized particles may be released in the breathing zone of the patient and dental operator. Here we tested the respirable fraction of several composite particles for their cytotoxic effect using an alveolar macrophage model system. ​METHODS: Composite dust was generated following a clinical protocol, and the dust particles were collected under sterile circumstances. Dust was dispersed in fluid, and 5-μm-filtered to enrich the respirable fractions. Quartz DQ12 and corundum were used as positive and negative control, respectively. Four concentrations (22.5 μg/ml, 45 μg/ml, 90 μg/ml and 180 μg/ml) were applied to NR8383 alveolar macrophages. Light and electron microscopy were used for subcellular localization of particles. Culture supernatants were tested for release of lactate dehydrogenase, glucuronidase, TNF-α, and H2O2.status: publishe

    Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO2-np in bronchial epithelial (16-HBE) cells

    No full text
    With the increase in use of TiO2-np, a better understanding of their safety is important. In the present study the effect of different crystal phases of TiO2-np (anatase, rutile and anatase: rutile mixture; 20-26 nm) were studied for cytogenotoxicity and global DNA methylation and hydroxymethylation. Cytotoxic response was observed at a concentration of 25μg/ml for the particles tested. Results of comet and micronucleus (with and without CytB) assays revealed significant genotoxic effect of these particles. Flow cytometry revealed cell cycle arrest in the S-phase. Based on the results, toxicity of the particles could be correlated with their physico-chemical properties (i.e. smaller size and hydrodynamic diameter and larger surface area), anatase form being the most toxic. From the results of the cytogenotoxicity assays, concentrations were determined for the epigenetic study. Effect on global DNA methylation and hydroxymethylation levels were studied at cyto-genotoxic (25μg/ml), genotoxic (12.5 μg/ml) and sub cyto-genotoxic (3.25μg/ml) concentrations using LC-MS/MS analysis. Though no significant changes were observed for 3 h treatment schedule; significant hypomethylation were observed at 24 h for anatase (significant at 3.25 and 25 μg/ml), rutile (significant at 3.25 and 25 μg/ml) and anatase: rutile mixture (significant at 25 μg/ml) forms. The results suggest that epigenetic changes could occur at sub cyto-genotoxic concentrations. And hence for complete characterization of nanoparticle toxicity, epigenetic studies should be performed along with conventional toxicity testing methods.publisher: Elsevier articletitle: Cyto-genotoxic and DNA methylation changes induced by different crystal phases of TiO2-np in bronchial epithelial (16-HBE) cells journaltitle: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis articlelink: http://dx.doi.org/10.1016/j.mrfmmm.2017.01.003 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved.status: publishe

    Saturation reduces in-vitro leakage of monomers from composites

    No full text
    OBJECTIVE: Accurate knowledge of the quantity of released monomers from composites is important. To evaluate the elution of monomers, polymerized composites are typically immersed in an extraction solvent. The objective was to determine whether the volume of extraction solvent and the immersion time influences monomer leachability from dental composite materials. METHODS: Composite disks of two commercial composites, (Filtek Supreme XTE, 3M ESPE and G-aenial Universal Flo, GC) were prepared. The disks (n=10) were placed in a glass vial with 1ml, 2ml or 3ml of extraction solvent (100% ethanol with deuterated diethylphalate as internal standard). After either 7 or 30 days at 37°C, the supernatant was collected and the amount of released monomers (BisEMA, BisGMA, UDMA, TEGDMA) and bisphenol A was measured with liquid chromatography mass spectroscopy. RESULTS: For both tested composites, the highest amount of released monomers was measured after sample incubation in 3ml, while the lowest amount was measured in 1ml of extraction solvent. Furthermore, 30 days did not result in much more monomer release compared to 7 days, and for most monomers, there was no statistically significant difference in release between 7 and 30 days. SIGNIFICANCE: Release kinetics in in-vitro experiments are also influenced by saturation of the extraction solvent with the leached monomers. This is important as it is unlikely that saturation can be reached in an in-vivo situation, where saliva (or pulpal fluid) is continuously refreshed. Saturation of the extraction solvent can be avoided in-vitro by refreshing the extraction medium after equal time intervals.status: publishe

    Cytotoxic effects of composite dust on human bronchial epithelial cells

    No full text
    Previous research revealed that during routine abrasive procedures like polishing, shaping or removing of composites, high amounts of respirable dust particles (<5μm) including nano-sized particles (<100nm) may be released.publisher: Elsevier articletitle: Cytotoxic effects of composite dust on human bronchial epithelial cells journaltitle: Dental Materials articlelink: http://dx.doi.org/10.1016/j.dental.2016.09.010 content_type: article copyright: © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.status: publishe

    Freshly-mixed and setting calcium-silicate cements stimulate human dental pulp cells

    No full text
    OBJECTIVES: To evaluate the effect of the eluates from 3 freshly-mixed and setting hydraulic calcium-silicate cements (hCSCs) on human dental pulp cells (HDPCs) and to examine the effect of a newly developed hCSC containing phosphopullulan (PPL) on HDPCs. METHODS: Human dental pulp cells, previously characterized as mesenchymal stem cells, were used. To collect the eluates, disks occupying the whole surface of a 12-well plate were prepared using an experimental hCSC containing phosphopullulan (GC), Nex-Cem MTA (GC), Biodentine (Septodont) or a zinc-oxide (ZnO) eugenol cement (material-related negative control). Immediately after preparing the disks (non-set), 3ml of Dulbecco's Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS) were added. The medium was left in contact with the disks for 24h before being collected. Four different dilutions were prepared (100%, 50%, 25% and 10%) and cell-cytotoxicity, cell-proliferation, cell-migration and odontogenic differentiation were tested. The cell-cytotoxicity and cell-proliferation assays were performed by XTT-colorimetric assay at different time points. The cell-migration ability was tested with the wound-healing assay and the odontogenic differentiation capacity of hCSCs on HDPCs was tested with RT-PCR. RESULTS: Considering all experimental data together, the eluates from 3 freshly-mixed and setting hCSCs appeared not cytotoxic toward HDPCs. Moreover, all three cements stimulated proliferation, migration and odontogenic differentiation of HDPCs. SIGNIFICANCE: The use of freshly-mixed and setting hCSCs is an appropriate approach to test the effect of the materials on human dental pulp cells. The experimental material containing PPL is non-cytotoxic and positively stimulates HDPCs.status: publishe

    Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo.

    No full text
    BACKGROUND: The terms agglomerates and aggregates are frequently used in the regulatory definition(s) of nanomaterials (NMs) and hence attract attention in view of their potential influence on health effects. However, the influence of nanoparticle (NP) agglomeration and aggregation on toxicity is poorly understood although it is strongly believed that smaller the size of the NPs greater the toxicity. A toxicologically relevant definition of NMs is therefore not yet available, which affects not only the risk assessment process but also hinders the regulation of nano-products. In this study, we assessed the influence of NP agglomeration on their toxicity/biological responses in vitro and in vivo. RESULTS: We tested two TiO2 NPs with different primary sizes (17 and 117 nm) and prepared ad-hoc suspensions composed of small or large agglomerates with similar dispersion medium composition. For in vitro testing, human bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic (THP-1) cell lines were exposed to these suspensions for 24 h and endpoints such as cytotoxicity, total glutathione, epithelial barrier integrity, inflammatory mediators and DNA damage were measured. Large agglomerates of 17 nm TiO2 induced stronger responses than small agglomerates for glutathione depletion, IL-8 and IL-1β increase, and DNA damage in THP-1, while no effect of agglomeration was observed with 117 nm TiO2. In vivo, C57BL/6JRj mice were exposed via oropharyngeal aspiration or oral gavage to TiO2 suspensions and, after 3 days, biological parameters including cytotoxicity, inflammatory cell recruitment, DNA damage and biopersistence were measured. Mainly, we observed that large agglomerates of 117 nm TiO2 induced higher pulmonary responses in aspirated mice and blood DNA damage in gavaged mice compared to small agglomerates. CONCLUSION: Agglomeration of TiO2 NPs influences their toxicity/biological responses and, large agglomerates do not appear less active than small agglomerates. This study provides a deeper insight on the toxicological relevance of NP agglomerates and contributes to the establishment of a toxicologically relevant definition for NMs
    corecore