94 research outputs found

    Schmallenberg virus: emergence of an Orthobunyavirus among ruminants in Western Europe

    Get PDF
    Recently, a novel virus has been identified among ruminants in Western Europe. This virus, the so-called Schmallenberg virus, belongs to the family Bunyaviridae, genus Orthobunyavirus, serogroup Simbu and is closely related to Akabane, Aino and Shamonda virus. In cattle, acute symptoms in the dam and adult animals generally include high fever, milk drop and diarrhea among others. More importantly, infection during gestation may lead to abortion, stillbirth and congenital malformations. As all bunyaviruses, Schmallenberg virus also uses vectors for efficient transmission. Closely related viruses causing similar symptoms, such as Akabane and Akabane-like viruses, are mainly transmitted by Culicoides. It is very likely that Schmallenberg virus is transmitted by similar vectors. This review provides an overview of Bunyaviridae, their epidemiology, symptoms, prevention and control. Special emphasis is put on the Simbu serogroup of the Orthobunyavirus genus pointing out the similarities between them and closely related members

    Diverse microbial interactions with the basement membrane barrier

    Get PDF
    During primary contact with susceptible hosts, microorganisms face an array of barriers that thwart their invasion process. Passage through the basement membrane (BM), a 50-100-nm-thick crucial barrier underlying epithelia and endothelia, is a prerequisite for successful host invasion. Such passage allows pathogens to reach nerve endings or blood vessels in the stroma and to facilitate spread to internal organs. During evolution, several pathogens have developed different mechanisms to cross this dense matrix of sheet-like proteins. To breach the BM, some microorganisms have developed independent mechanisms, others hijack host cells that are able to transverse the BM (e.g. leukocytes and dendritic cells) and oncogenic microorganisms might even trigger metastatic processes in epithelial cells to penetrate the underlying BM

    A trypsin-like serine protease is involved in pseudorabies virus invasion through the basement membrane barrier of porcine nasal respiratory mucosa

    Get PDF
    Several alphaherpesviruses breach the basement membrane during mucosal invasion. In the present study, the role of proteases in this process was examined. The serine protease-specific inhibitor AEBSF inhibited penetration of the basement membrane by the porcine alphaherpesvirus pseudorabies virus (PRV) by 88.1% without affecting lateral spread. Inhibitors of aspartic-, cysteine-, and metalloproteases did not inhibit viral penetration of the basement membrane. Further analysis using the Soybean Type I-S trypsin inhibitor for the serine protease subcategory of trypsin-like serine proteases resulted in a 96.9% reduction in plaque depth underneath the basement membrane. These data reveal a role of a trypsin-like serine protease in PRV penetration of the basement membrane

    Comparative analysis of replication characteristics of BoHV-1 subtypes in bovine respiratory and genital mucosa explants: a phylogenetic enlightenment

    Get PDF
    In general, members of the Alphaherpesvirinae use the epithelium of the upper respiratory and/or genital tract as a preferential site for primary replication. Bovine herpesvirus type 1 (BoHV-1) may replicate at both sites and cause two major clinical entities designated as infectious bovine rhinotracheitis (IBR) and infectious pustular vulvovaginitis/balanoposthitis (IPV/IPB) in cattle. It has been hypothesized that subtype 1.1 invades preferentially the upper respiratory mucosa whereas subtype 1.2 favors replication at the peripheral genital tract. However, some studies are in contrast with this hypothesis. A thorough study of primary replication at both mucosae could elucidate whether or not different BoHV-1 subtypes show differences in mucosa tropism. We established bovine respiratory and genital organ cultures with emphasis on maintenance of tissue morphology and viability during in vitro culture. In a next step, bovine respiratory and genital mucosa explants of the same animals were inoculated with several BoHV-1 subtypes. A quantitative analysis of viral invasion in the mucosa was performed at 0 h, 24 h, 48 h and 72 h post inoculation (pi) by measuring plaque latitude and penetration depth underneath the basement membrane. All BoHV-1 subtypes exhibited a more profound invasion capacity in respiratory tissue compared to that in genital tissue at 24 h pi. However, at 24 h pi plaque latitude was found to be larger in genital tissue compared to respiratory tissue and this for all subtypes. These similar findings among the different subtypes take the edge off the belief of the existence of specific mucosa tropisms of different BoHV-1 subtypes

    A beneficiary role for neuraminidase in influenza virus penetration through the respiratory mucus

    Get PDF
    Swine influenza virus (SIV) has a strong tropism for pig respiratory mucosa, which consists of a mucus layer, epithelium, basement membrane and lamina propria. Sialic acids present on the epithelial surface have long been considered to be determinants of influenza virus tropism. However, mucus which is also rich in sialic acids may serve as the first barrier of selection. It was investigated how influenza virus interacts with the mucus to infect epithelial cells. Two techniques were applied to track SIV H1N1 in porcine mucus. The microscopic diffusion of SIV particles in the mucus was analyzed by single particle tracking (SPT), and the macroscopic penetration of SIV through mucus was studied by a virus in-capsule-mucus penetration system, followed by visualizing the translocation of the virions with time by immunofluorescence staining. Furthermore, the effects of neuraminidase on SIV getting through or binding to the mucus were studied by using zanamivir, a neuraminidase inhibitor (NAI), and Arthrobacter ureafaciens neuraminidase. The distribution of the diffusion coefficient shows that 70% of SIV particles were entrapped, while the rest diffused freely in the mucus. Additionally, SIV penetrated the porcine mucus with time, reaching a depth of 65 mm at 30 min post virus addition, 2 fold of that at 2 min. Both the microscopic diffusion and macroscopic penetration were largely diminished by NAI, while were clearly increased by the effect of exogenous neuraminidase. Moreover, the exogenous neuraminidase sufficiently prevented the binding of SIV to mucus which was reversely enhanced by effect of NAI. These findings clearly show that the neuraminidase helps SIV move through the mucus, which is important for the virus to reach and infect epithelial cells and eventually become shed into the lumen of the respiratory tract

    Herpes Simplex Virus Type 1 Penetrates the Basement Membrane in Human Nasal Respiratory Mucosa

    Get PDF
    Background: Herpes simplex virus infections are highly prevalent in humans. However, the current therapeutics suffer important drawbacks such as limited results in neonates, increasing occurrence of resistance and impeded treatment of stromal infections. Remarkably, interactions of herpesviruses with human mucosa, the locus of infection, remain poorly understood and the underlying mechanisms in stromal infection remain controversial. Methodology/Principal Findings: A human model consisting of nasal respiratory mucosa explants was characterised. Viability and integrity were examined during 96 h of cultivation. HSV1-mucosa interactions were analysed. In particular, we investigated whether HSV1 is able to reach the stroma. Explant viability and integrity remained preserved. HSV1 induced rounding up and loosening of epithelial cells with very few apoptotic and necrotic cells observed. Following 16-24 h of infection, HSV1 penetrated the basement membrane and replicated in the underlying lamina propria. Conclusions/Significance: This human explant model can be used to study virus-mucosa interactions and viral mucosal invasion mechanisms. Using this model, our results provide a novel insight into the HSV1 stromal invasion mechanism and for the first time directly demonstrate that HSV1 can penetrate the basement membrane

    Engineering antibody heavy chain CDR3 to create a phage display Fab library rich in antibodies that bind charged carbohydrates.

    Full text link
    peer reviewedA number of small charged carbohydrate moieties have been associated with inflammation and cancer. However, the development of therapeutic Abs targeting these moieties has been hampered by their low immunogenicity and their structural relationship to self-Ag. We report the design of an Ab repertoire enriched in Abs binding to small charged carbohydrates and the construction of a human Fab phagemid library, "FAB-CCHO." This library combines L chain Ig sequences from human donors and H chain synthetic diversity constructed in key Ag contact sites in CDRs 1, 2, and 3 of the human framework V(H)3-23. The H chain CDR3 has been engineered to enrich the library in Abs that bind charged carbohydrates by the introduction of basic residues at specific amino acid locations. These residues were selected on the basis of anti-carbohydrate Ab sequence alignment. The success of this design is demonstrated by the isolation of phage Abs against charged carbohydrate therapeutic target Ags such as sulfated sialyl-Lewis X glycan and heparan sulfate

    Application of integrated production and economic models to estimate the impact of Schmallenberg virus for various sheep production types in the UK and France

    Get PDF
    The present study aimed to estimate and compare the economic impact of Schmallenberg virus (SBV) in different sheep production holdings using partial budget and gross margin analyses in combination with production models. The sheep production types considered were lowland spring lambing, upland spring lambing and early lambing flocks in the UK, and grass lamb flocks of the Centre and West of France, extensive lambing flocks and dairy sheep flocks in France. Two disease scenarios with distinct input parameters associated with reproductive problems were considered: low and high impact. Sensitivity analyses were performed for the most uncertain input parameters, and the models were run with all of the lowest and highest values to estimate the range of disease impact
    corecore