7 research outputs found

    Vascular Responses following Light Therapy: A Pilot Study with Healthy Volunteers

    Get PDF
    (1) Background: Studies have reported the effectiveness of light therapy in various medical conditions. Our pilot study aimed to assess the effect of Maharishi light therapy (MLT) on physiological parameters, such as the heart rate (HR), HR variability (HRV), blood pressure (BP), BP variability (BPV), and the retinal microvasculature of healthy participants; (2) Methodology: Thirty (14 males and 16 females) healthy, non-smoking participants between 23 and 71 years old (46 ± 18 years) were included in this randomized crossover study. Each participant was tested with a placebo (using LED light) and gem lights, 24 h apart. Hemodynamic parameters were recorded during the session, and 24 h heart rate and BP levels were assessed via mobile devices. Retinal vascular responses were captured with fundus images and the subsequent analysis of retinal vessel widths. A linear model, using repeated measures ANOVA, was used to compare the responses across the sexes and to assess the effect of the MLT; (3) Results: Changes in the central retinal artery equivalent (CRAE) (p < 0.001) and central retinal vein equivalent (CRVE) (p = 0.002) parameters were observed. CRAE and CRVE decreased under MLT and increased under the placebo condition from before to after. However, the baseline values of the participants already differed significantly before the application of any therapy, and the variation in the retinal vessel diameters was already large in the baseline measurements. This suggests that the observed effect results may only reflect naturally occurring fluctuations in the microcirculation and not the effect of MLT. Furthermore, no significant effects were observed in any other investigated parameters; (4) Conclusion: Our study with healthy participants finds significant changes in retinal parameters, but the biological variation in the baseline measurements was large to begin with. This suggests that the observed effect results only reflect naturally occurring fluctuations in the microcirculation and not the effect of MLT. However, in the future, larger studies in which MLT is applied for longer periods and/or in patients with different diseases could discover the physiological impacts of this type of therapy.publishedVersio

    Effects of menstrual cycle on hemodynamic and autonomic responses to central hypovolemia

    Get PDF
    BackgroundEstrogen and progesterone levels undergo changes throughout the menstrual cycle. Existing literature regarding the effect of menstrual phases on cardiovascular and autonomic regulation during central hypovolemia is contradictory.Aims and studyThis study aims to explore the influence of menstrual phases on cardiovascular and autonomic responses in both resting and during the central hypovolemia induced by lower body negative pressure (LBNP). This is a companion paper, in which data across the menstrual phases from healthy young females, whose results are reported in Shankwar et al. (2023), were further analysed.MethodsThe study protocol consisted of three phases: (1) 30 min of supine rest; (2) 16 min of four LBNP levels; and (3) 5 min of supine recovery. Hemodynamic and autonomic responses (assessed via heart rate variability, HRV) were measured before-, during-, and after-LBNP application using Task Force Monitor® (CNSystems, Graz, Austria). Blood was also collected to measure estrogen and progesterone levels.ResultsIn this companion paper, we have exclusively assessed 14 females from the previous study (Shankwar et al., 2023): 8 in the follicular phase of the menstrual cycle (mean age 23.38 ± 3.58 years, height 166.00 ± 5.78 cm, weight 57.63 ± 5.39 kg and BMI of 20.92 ± 1.96 25 kg/m2) and 6 in the luteal phase (mean age 22.17 ± 1.33 years, height 169.83 ± 5.53 cm, weight 62.00 ± 7.54 kg and BMI of 21.45 ± 2.63 kg/m2). Baseline estrogen levels were significantly different from the follicular phase as compared to the luteal phase: (33.59 pg/ml, 108.02 pg/ml, respectively, p &lt; 0.01). Resting hemodynamic variables showed no difference across the menstrual phases. However, females in the follicular phase showed significantly lower resting values of low-frequency (LF) band power (41.38 ± 11.75 n.u. and 58.47 ± 14.37 n.u., p = 0.01), but higher resting values of high frequency (HF) band power (58.62 ± 11.75 n.u. and 41.53 ± 14.37 n.u., p = 0.01), as compared to females in the luteal phase. During hypovolemia, the LF and HF band powers changed only in the follicular phase F(1, 7) = 77.34, p &lt; 0.0001 and F(1, 7) = 520.06, p &lt; 0.0001, respectively.ConclusionsThe menstrual phase had an influence on resting autonomic variables, with higher sympathetic activity being observed during the luteal phase. Central hypovolemia leads to increased cardiovascular and autonomic responses, particularly during the luteal phase of the menstrual cycle, likely due to higher estrogen levels and increased sympathetic activity

    Effects of meditation on cardiovascular and muscular responses in patients during cardiac rehabilitation

    Get PDF
    Background: Cardiovascular diseases are the world’s number one cause of death, with exceeding psychosocial stress load being considered a major risk factor. A stress management technique that has repeatedly shown positive effects on the cardiovascular system is the Transcendental Meditation (TM) technique. The present pilot study aimed to investigate the potential effect of TM on the recovery of cardiac patients. Objectives: We hypothesized that practicing TM in patients undergoing a 4-week cardiac rehabilitation program augments the recovery of cardiovascular parameters and reduces skeletal muscle tone after rehabilitation. Methods: Twenty cardiac patients were recruited and randomly assigned to either the control or the TM group. Cardiovascular parameters were assessed with the Task Force Monitor (TFM) and skeletal muscle contractile properties by Tensiomyography during a sit-stand test, performed at the beginning and end of a 4-week in-patient rehabilitation program. Results: Systolic blood pressure (SBP) was significantly lower after 4 weeks of cardiac rehabilitation, while the RR-interval (RRI) significantly increased. At the skeletal muscle level, the contraction time and maximal displacement increased, though only in the gastrocnemius medialis and biceps femoris muscles and not in vastus lateralis. Group interactions were not observed for hemodynamic parameters nor for muscle contractile properties. Discussion: Although significant improvements in hemodynamic and muscular parameters were observed after 4 weeks of rehabilitation, we could not provide evidence that TM improved rehabilitation after 4 weeks. TM may unfold its effects on the cardiovascular system in the longer term. Hence, future studies should comprise a long-term follow-up

    Sex variations in retinal microcirculation response to lower body negative pressure

    Get PDF
    Introduction: Lower body negative pressure (LBNP) is routinely used to induce central hypovolemia. LBNP leads to a shift in blood to the lower extremities. While the effects of LBNP on physiological responses and large arteries have been widely reported, there is almost no literature regarding how these cephalad fluid shifts affect the microvasculature. The present study evaluated the changes in retinal microcirculation parameters induced by LBNP in both males and females. Methodology: Forty-four participants were recruited for the present study. The retinal measurements were performed at six time points during the LBNP protocol. To prevent the development of cardiovascular collapse (syncope) in the healthy participants, graded LBNP until a maximum of −40 mmHg was applied. A non-mydriatic, hand-held Optomed Aurora retinal camera was used to capture the retinal images. MONA Reva software (version 2.1.1) was used to analyze the central retinal arterial and venous diameter changes during the LBNP application. Repeated measures ANOVAs, including sex as the between-subjects factor and the grade of the LBNP as the within-subjects factor, were performed. Results: No significant changes in retinal microcirculation were observed between the evaluated time points or across the sexes. Conclusions: Graded LBNP application did not lead to changes in the retinal microvasculature across the sexes. The present study is the first in the given area that attempted to capture the changes in retinal microcirculation caused by central hypovolemia during LBNP. However, further research is needed with higher LBNP levels, including those that can induce pre-fainting (presyncope), to fully understand how retinal microcirculation adapts during complete cardiovascular collapse (e.g., during hypovolemic shock) and/or during severe hemorrhage

    Orthostatic Challenge-Induced Coagulation Activation in Young and Older Persons

    No full text
    The incidence of thrombosis increases with aging. We investigated the coagulatory/haemostatic system across the ages and tested the hypothesis that older persons have a hypercoagulable state compared to younger persons at rest, and that standing up (orthostasis) leads to greater changes in coagulation in older persons. In total, 22 older and 20 young participants performed a 6 min sit-to-stand test (orthostatic challenge). Blood was collected prior to and at the end of standing and haemostatic profiling was performed via thrombelastometry (TEM), calibrated automated thrombogram (CAT) and standard coagulation assays. At baseline, three CAT-derived values indicated enhanced capability to generate thrombin in older participants. However, other measured parameters did not suggest a hypercoagulable state in older participants: prolonged TEM-derived coagulation times (295 vs. 209 s, medians, p = 0.0025) and prothrombin times (103 vs. 114%, medians, p = 0.0087), as well as lower TF levels (440 vs. 672 pg/mL, medians, p = 0.0245) and higher t-PA levels (7.3 vs. 3.8 ng/mL, medians, p = 0.0002), indicative of enhanced fibrinolytic capability, were seen. Younger participants were more sensitive to the orthostatic challenge: CAT-derived endogenous thrombin potentials (ETPs) were only increased in the young (1337 to 1350 nM.min, medians, p = 0.0264) and shortening of PTs was significantly higher in the young vs. older participants (p = 0.0242). Our data suggest that the increased thrombosis propensity in older persons is not primarily attributable to a hyperactive coagulation cascade but may be due to other pathologies associated with aging

    The octahaem MccA is a haem c–copper sulfite reductase

    No full text
    The six-electron reduction of sulfite to sulfide is the pivot point of the biogeochemical cycle of the element sulfur. The octahaem cytochrome c MccA (also known as SirA) catalyses this reaction for dissimilatory sulfite utilization by various bacteria. It is distinct from known sulfite reductases because it has a substantially higher catalytic activity and a relatively low reactivity towards nitrite. The mechanistic reasons for the increased efficiency of MccA remain to be elucidated. Here we show that anoxically purified MccA exhibited a 2- to 5.5-fold higher specific sulfite reductase activity than the enzyme isolated under oxic conditions. We determined the three-dimensional structure of MccA to 2.2 Å resolution by single-wavelength anomalous dispersion. We find a homotrimer with an unprecedented fold and haem arrangement, as well as a haem bound to a CX15CH motif. The heterobimetallic active-site haem 2 has a Cu(I) ion juxtaposed to a haem c at a Fe-Cu distance of 4.4 Å. While the combination of metals is reminiscent of respiratory haem-copper oxidases, the oxidation-labile Cu(I) centre of MccA did not seem to undergo a redox transition during catalysis. Intact MccA tightly bound SO2 at haem 2, a dehydration product of the substrate sulfite that was partially turned over due to photoreduction by X-ray irradiation, yielding the reaction intermediate SO. Our data show the biometal copper in a new context and function and provide a chemical rationale for the comparatively high catalytic activity of MccA
    corecore