3 research outputs found

    Anatomy of avian rictal bristles in Caprimulgiformes reveals reduced tactile function in open-habitat, partially diurnal foraging species

    Get PDF
    Avian rictal bristles are present in many species of birds, especially in nocturnal species. Rictal bristles occur along the upper beak and are morphologically similar to mammalian whiskers. Mammalian whiskers are important tactile sensors, guiding locomotion, foraging and social interactions, and have a well‐characterised anatomy. However, it is not yet known whether avian rictal bristles have a sensory function, and their morphology, anatomy and function have also not been described in many species. Our study compares bristle morphology, follicle anatomy and their association with foraging traits, across 12 Caprimulgiform species. Rictal bristle morphology and follicle anatomy were diverse across the 12 species. Nine of the 12 species had mechanoreceptors around their bristle follicles; however, there was large variation in their musculature, mechanoreceptor numbers and bristle morphology. Overall, species with short, thin, branching bristles that lacked mechanoreceptors tended to forage pre‐dusk in open habitats, whereas species with mechanoreceptors around their bristle follicle tended to forage at night and in more closed habitats. We suggest that rictal bristles are likely to be tactile in many species and may aid in navigation, foraging and collision avoidance; however, identifying rictal bristle function is challenging and demands further investigation in many species

    Environmental-induced acquisition of nuptial plumage expression: a role of denaturation of feather carotenoproteins?

    Get PDF
    Several avian species show a bright carotenoid-based coloration during spring and following a period of duller coloration during the previous winter, despite carotenoids presumably being fully deposited in feathers during the autumn moult. Carotenoid-based breast feathers of male linnets (Carduelis cannabina) increased in hue (redness), saturation and brightness after exposing them to outdoor conditions from winter to spring. This represents the first experimental evidence showing that carotenoid-based plumage coloration may increase towards a colourful expression due to biotic or abiotic environmental factors acting directly on full-grown feathers when carotenoids may be fully functional. Sunlight ultraviolet (UV) irradiation was hypothesized to denature keratin and other proteins that might protect pigments from degradation by this and other environmental factors, suggesting that sunlight UV irradiation is a major factor in the colour increase from winter to spring. Feather proteins and other binding molecules, if existing in the follicles, may be linked to carotenoids since their deposition into feathers to protect colourful features of associated carotenoids during the non-breeding season when its main signalling function may be relaxed. Progress towards uncovering the significance of concealment and subsequent display of colour expression should consider the potential binding and protecting nature of feather proteins associated with carotenoids
    corecore