32 research outputs found

    First genetic data for the critically endangered Cuban endemic Zapata Rail Cyanolimnas cerverai, and the taxonomic implications

    Get PDF
    Funding Information: GMK and AK are grateful to staff, particularly Ianela García-Lau, Manolo Barro and volunteers at the Museo de Historia Natural ‘Felipe Poey’, La Habana, Cuba, for access to relevant specimens. This study was funded by University of Aberdeen (AB) and The Sound Approach Ph.D. Studentship (TJS).Peer reviewedPublisher PD

    Circannual variation in blood parasitism in a sub-Saharan migrant passerine bird, the garden warbler

    Get PDF
    Knowing the natural dynamics of pathogens in migratory birds is important, for example, to understand the factors that influence the transport of pathogens to and their transmission in new geographical areas, whereas the transmission of other pathogens might be restricted to a specific area. We studied haemosporidian blood parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon in a migratory bird, the garden warbler Sylvia borin. Birds were sampled in spring, summer and early autumn at breeding grounds in Sweden, on migration at Capri, Italy and on arrival and departure from wintering staging areas in West Africa: mapping recoveries of garden warblers ringed in Fennoscandia and Capri showed that these sites are most probably on the migratory flyway of garden warblers breeding at Kvismaren. Overall, haemosporidian prevalence was 39%, involving 24 different parasite lineages. Prevalence varied significantly over the migratory cycle, with relatively high prevalence of blood parasites in the population on breeding grounds and at the onset of autumn migration, followed by marked declines in prevalence during migration both on spring and autumn passage. Importantly, we found that when examining circannual variation in the different lineages, significantly different prevalence profiles emerged both between and within genera. Our results suggest that differences in prevalence profiles are the result of either different parasite transmission strategies or coevolution between the host and the various parasite lineages. When separating parasites into common vs. rare lineages, we found that two peaks in the prevalence of rare parasites occur; on arrival at Swedish breeding grounds, and after the wintering period in Africa. Our results stress the importance of appropriate taxonomic resolution when examining host-parasite interactions, as variation in prevalence both between and within parasite genera can show markedly different patterns

    Predation Danger Can Explain Changes in Timing of Migration: The Case of the Barnacle Goose

    Get PDF
    Understanding stopover decisions of long-distance migratory birds is crucial for conservation and management of these species along their migratory flyway. Recently, an increasing number of Barnacle geese breeding in the Russian Arctic have delayed their departure from their wintering site in the Netherlands by approximately one month and have reduced their staging duration at stopover sites in the Baltic accordingly. Consequently, this extended stay increases agricultural damage in the Netherlands. Using a dynamic state variable approach we explored three hypotheses about the underlying causes of these changes in migratory behavior, possibly related to changes in (i) onset of spring, (ii) potential intake rates and (iii) predation danger at wintering and stopover sites. Our simulations showed that the observed advance in onset of spring contradicts the observed delay of departure, whereas both increased predation danger and decreased intake rates in the Baltic can explain the delay. Decreased intake rates are expected as a result of increased competition for food in the growing Barnacle goose population. However, the effect of predation danger in the model was particularly strong, and we hypothesize that Barnacle geese avoid Baltic stopover sites as a response to the rapidly increasing number of avian predators in the area. Therefore, danger should be considered as an important factor influencing Barnacle goose migratory behavior, and receive more attention in empirical studies

    A simple dynamic model explains the diversity of island birds worldwide

    Get PDF
    International audienc

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe

    concatenatenexus_edMSR

    No full text
    This program is written by Shannon Hedtke, and takes all nexus files in a directory and concatenates them. I have modified the original script, which splits sequence names on "_" and removes all duplicates of the left hand side - something that is good for cleaning up among GenBank versions of the same sequence, but bad for removing allelles

    High MHC gene copy number maintains diversity despite homozygosity in a Critically Endangered single-island endemic bird, but no evidence of MHC-based mate choice

    No full text
    Small population sizes can, over time, put species at risk due to the loss of genetic variation and the deleterious effects of inbreeding. Losing diversity in the major histocompatibility complex (MHC) could be particularly harmful, given its key role in the immune system. Here, we assess MHC class I (MHC-I) diversity and its effects on mate choice and survival in the Critically Endangered Raso lark Alauda razae, a species restricted to the 7 km2 islet of Raso, Cape Verde, since ~1460, whose population size has dropped as low as 20 pairs. Exhaustively genotyping 122 individuals, we find no effect of MHC-I genotype/diversity on mate choice or survival. However, we demonstrate that MHC-I diversity has been maintained through extreme bottlenecks by retention of a high number of gene copies (at least 14), aided by cosegregation of multiple haplotypes comprising 2–8 linked MHC-I loci. Within-locus homozygosity is high, contributing to low population-wide diversity. Conversely, each individual had comparably many alleles, 6–16 (average 11), and the large and divergent haplotypes occur at high frequency in the population, resulting in high within-individual MHC-I diversity. This functional immune gene diversity will be of critical importance for this highly threatened species’ adaptive potential

    EndoS2 is a unique and conserved enzyme of serotype M49 group A Streptococcus that hydrolyses N-linked glycans on IgG and α1-acid glycoprotein

    Get PDF
    Many bacteria have evolved ways to interact with glycosylation functions of the immune system of their hosts. Streptococcus pyogenes [GAS (group A Streptococcus)] secretes the enzyme EndoS that cleaves glycans on human IgG and impairs the effector functions of the antibody. The ndoS gene, encoding EndoS, has, until now, been thought to be conserved throughout the serotypes. However, in the present study, we identify EndoS2, an endoglycosidase in serotype M49 GAS strains. We characterized EndoS2 and the corresponding ndoS2 gene using sequencing, bioinformatics, phylogenetic analysis, recombinant expression and LC–MS analysis of glycosidic activity. This revealed that EndoS2 is present exclusively, and highly conserved, in serotype M49 of GAS and is only 37% identical with EndoS. EndoS2 showed endo-ÎČ-N-acetylglucosaminidase activity on all N-linked glycans of IgG and on biantennary and sialylated glycans of AGP (α1-acid glycoprotein). The enzyme was found to act only on native IgG and AGP and to be specific for free biantennary glycans with or without terminal sialylation. GAS M49 expression of EndoS2 was monitored in relation to carbohydrates present in the culture medium and was linked to the presence of sucrose. We conclude that EndoS2 is a unique endoglycosidase in serotype M49 and differs from EndoS of other GAS strains by targeting both IgG and AGP. EndoS2 expands the repertoire of GAS effectors that modify key glycosylated molecules of host defence
    corecore