176 research outputs found

    Plasticity of Adult Sensorimotor System in Severe Brain Infarcts: Challenges and Opportunities

    Get PDF
    Functional reorganization forms the critical mechanism for the recovery of function after brain damage. These processes are driven by inherent changes within the central nervous system (CNS) triggered by the insult and further depend on the neural input the recovering system is processing. Therefore these processes interact with not only the interventions a patient receives, but also the activities and behaviors a patient engages in. In recent years, a wide range of research programs has addressed the association between functional reorganization and the spontaneous and treatment-induced recovery. The bulk of this work has focused on upper-limb and hand function, and today there are new treatments available that capitalize on the neuroplasticity of the brain. However, this is only true for patients with mild to moderated impairments; for those with very limited hand function, the basic understanding is much poorer and directly translates into limited treatment opportunities for these patients. The present paper aims to highlight the knowledge gap on severe stroke with a brief summary of the literature followed by a discussion of the challenges involved in the study and treatment of severe stroke and poor long-term outcome

    Long-term effects of mild traumatic brain injury on cognitive performance

    Get PDF
    Although a proportion of individuals report chronic cognitive difficulties after mild traumatic brain injury (mTBI), results from behavioral testing have been inconsistent. In fact, the variability inherent to the mTBI population may be masking subtle cognitive deficits. We hypothesized that this variability could be reduced by accounting for post-concussion syndrome (PCS) in the sample. Thirty-six participants with mTBI (>1 year post-injury) and 36 non-head injured controls performed information processing speed (Paced Visual Serial Addition Task, PVSAT) and working memory (n-Back) tasks. Both groups were split by PCS diagnosis (4 groups, all n = 18), with categorization of controls based on symptom report. Participants with mTBI and persistent PCS had significantly greater error rates on both the n-Back and PVSAT, at every difficulty level except 0-Back (used as a test of performance validity). There was no difference between any of the other groups. Therefore, a cognitive deficit can be observed in mTBI participants, even 1 year after injury. Correlations between cognitive performance and symptoms were only observed for mTBI participants, with worse performance correlating with lower sleep quality, in addition to a medium effect size association (falling short of statistical significance) with higher PCS symptoms, post-traumatic stress disorder (PTSD), and anxiety. These results suggest that the reduction in cognitive performance is not due to greater symptom report itself, but is associated to some extent with the initial injury. Furthermore, the results validate the utility of our participant grouping, and demonstrate its potential to reduce the variability observed in previous studies

    Multimodal imaging of mild traumatic brain injury and persistent postconcussion syndrome

    Get PDF
    Background: Persistent postconcussion syndrome (PCS) occurs in around 5– 10% of individuals after mild traumatic brain injury (mTBI), but research into the underlying biology of these ongoing symptoms is limited and inconsistent. One reason for this could be the heterogeneity inherent to mTBI, with individualized injury mechanisms and psychological factors. A multimodal imaging study may be able to characterize the injury better. Aim: To look at the relationship between functional (fMRI), structural (diffusion tensor imaging), and metabolic (magnetic resonance spectroscopy) data in the same participants in the long term (>1 year) after injury. It was hypothesized that only those mTBI participants with persistent PCS would show functional changes, and that these changes would be related to reduced structural integrity and altered metabolite concentrations. Methods: Functional changes associated with persistent PCS after mTBI (>1 year postinjury) were investigated in participants with and without PCS (both n = 8) and non-head injured participants (n = 9) during performance of working memory and attention/processing speed tasks. Correlation analyses were performed to look at the relationship between the functional data and structural and metabolic alterations in the same participants. Results: There were no behavioral differences between the groups, but participants with greater PCS symptoms exhibited greater activation in attention-related areas (anterior cingulate), along with reduced activation in temporal, default mode network, and working memory areas (left prefrontal) as cognitive load was increased from the easiest to the most difficult task. Functional changes in these areas correlated with reduced structural integrity in corpus callosum and anterior white matter, and reduced creatine concentration in right dorsolateral prefrontal cortex. Conclusion: These data suggest that the top-down attentional regulation and deactivation of task-irrelevant areas may be compensating for the reduction in working memory capacity and variation in white matter transmission caused by the structural and metabolic changes after injury. This may in turn be contributing to secondary PCS symptoms such as fatigue and headache. Further research is required using multimodal data to investigate the mechanisms of injury after mTBI, but also to aid individualized diagnosis and prognosis

    PENGARUH RANGE OF MOTION EXERCISE TERHADAP KEKUATAN OTOT PADA PASIEN STROKE DI WILAYAH PUSKESMAS SIDOTOPO SURABAYA

    Get PDF
    The weakness muscle is the biggest impact on patients with stroke, to the practice Range of Motion Exercise with the aim is to maintain or preserve muscle strength, to maintain mobility joints and simulate circulation. With an increase in the incidence of stroke and disability, if the practice Range of Motion Exercise is not implemented it will be a significant decrease in muscle strength, cause muscle kontraktur and a decubitus. The study aims to find his Range of Motion Exercise of muscle strength in patients with stroke in the Puskesmas Sidotopo Surabaya. This study uses Pra-Eksperimental One-Group Pra-Post Test Design. Population in this study is a stroke patient who live in the Puskesmas Sidotopo Surabaya and sampels 32 of responden. The sample by using techniques purposive sampling. Variables independent in this study is Range of Motion Exercise and the variables dependent is muscle strength. The intstrumen used in the collection of data is an observation to the strength of muscles. The results showed an increase in strength of muscle strength from scale 3 to scale 4 and from scale 4 to scale 5 after the Range of Motion Exercise. The t-test statistic test shows that p value 0.000 (

    A Template Effect Study on Voxel-Based Morphometry in Statistic Parametric Mapping

    Get PDF
    Voxel-based morphometry (VBM) is an automated method allowing identification of anatomical differences in the whole brain without the pre-specification of a region of interests. Spatial normalization is one of the major processes in VBM, which transforms all images to a standard template. A variety of templates were employed in VBM researches in the literature, including the MNI template and study-specific templates. Few studies were presented to test the effect of templates on the detection accuracy of VBM, although it is claimed in many papers that the study-specific template performs better. However, the creation of the study-specific template differs on the subjects included. In this paper, the gray matter (GM) difference of two groups (female vs male) was analyzed to evaluate the effects of templates on the VBM results. The statistic parametric mapping (SPM) package, as the standard software for VBM implementation, was used for analyses.</p

    Motor planning in chronic upper-limb hemiparesis: evidence from movement-related potentials.

    Get PDF
    BACKGROUND: Chronic hemiplegia is a common long-term consequence of stroke, and subsequent motor recovery is often incomplete. Neurophysiological studies have focused on motor execution deficits in relatively high functioning patients. Much less is known about the influence exerted by processes related to motor preparation, particularly in patients with poor motor recovery. METHODOLOGY/PRINCIPAL FINDINGS: The current study investigates motor preparation using a modified response-priming experiment in a large sample of patients (n = 50) with moderate-to-severe chronic hemiparesis. The behavioural results revealed that hemiparetic patients had an increased response-priming effect compared to controls, but that their response times were markedly slower for both hands. Patients also demonstrated significantly enhanced midline late contingent negative variation (CNV) during paretic hand preparation, despite the absence of overall group differences when compared to controls. Furthermore, increased amplitude of the midline CNV correlated with a greater response-priming effect. We propose that these changes might reflect greater anticipated effort to respond in patients, and consequently that advance cueing of motor responses may be of benefit in these individuals. We further observed significantly reduced CNV amplitudes over the lesioned hemisphere in hemiparetic patients compared to controls during non-paretic hand preparation, preparation of both hands and no hand preparation. Two potential explanations for these CNV reductions are discussed: alterations in anticipatory attention or state changes in motor processing, for example an imbalance in inter-hemispheric inhibition. CONCLUSIONS/SIGNIFICANCE: Overall, this study provides evidence that movement preparation could play a crucial role in hemiparetic motor deficits, and that advance motor cueing may be of benefit in future therapeutic interventions. In addition, it demonstrates the importance of monitoring both the non-paretic and paretic hand after stroke and during therapeutic intervention
    corecore