1,030 research outputs found

    Quantifying chaos for ecological stoichiometry

    Get PDF
    The theory of ecological stoichiometry considers ecological interactions among species with different chemical compositions. Both experimental and theoretical investigations have shown the importance of species composition in the outcome of the population dynamics. A recent study of a theoretical three-species food chain model considering stoichiometry [B. Deng and I. Loladze, Chaos 17, 033108 (2007)] shows that coexistence between two consumers predating on the same prey is possible via chaos. In this work we study the topological and dynamical measures of the chaotic attractors found in such a model under ecological relevant parameters. By using the theory of symbolic dynamics, we first compute the topological entropy associated with unimodal Poincareacute return maps obtained by Deng and Loladze from a dimension reduction. With this measure we numerically prove chaotic competitive coexistence, which is characterized by positive topological entropy and positive Lyapunov exponents, achieved when the first predator reduces its maximum growth rate, as happens at increasing delta(1). However, for higher values of delta(1) the dynamics become again stable due to an asymmetric bubble-like bifurcation scenario. We also show that a decrease in the efficiency of the predator sensitive to prey's quality (increasing parameter zeta) stabilizes the dynamics. Finally, we estimate the fractal dimension of the chaotic attractors for the stoichiometric ecological model

    Predator water balance alters intraguild predation in a streamsidefood web

    Get PDF
    Previous work suggests that animal water balance can influence trophic interactions, with predators increasing their consumption of water-laden prey to meet water demands.But it is unclear how the need for water interacts with the need for energy to drive trophic interactions under shifting conditions. Using manipulative field experiments, we show that water balance influences the effects of top predators on prey with contrasting ratios of water and energy, altering the frequency of intraguild predation. Water-stressed top predators (large spiders) negatively affect water-laden basal prey (crickets), especially male prey with higher water content, whereas alleviation of water limitation causes top predators to switch to negatively affecting energy-rich midlevel predators (small spiders). Thus, the relative water and energy content of multiple prey, combined with the water demand of the top predator, influences trophic interactions in ways that can alter the strength of intraguild predation. These findings underscore the need for integration of multi resource approaches for understanding implications of global change for food webs

    Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams

    Get PDF
    Nutrient enrichment of detritus‐based streams increases detrital resource quality for consumers and stimulates breakdown rates of particulate organic carbon (C). The relative importance of dissolved inorganic nitrogen (N) vs. phosphorus (P) for detrital quality and their effects on microbial‐ vs. detritivore‐mediated detrital breakdown are poorly understood. We tested effects of experimental N and P additions on detrital stoichiometry (C:N, C:P) and total and microbial breakdown (i.e., with and without detritivorous shredders, respectively) of five detritus types (four leaf litter species and wood) with different initial C : nutrient content. We enriched five headwater streams continuously for two years at different relative availabilities of N and P and compared breakdown rates and detrital stoichiometry to pretreatment conditions. Total breakdown rates increased with nutrient enrichment and were predicted by altered detrital stoichiometry. Streamwater N and P, fungal biomass, and their interactions affected stoichiometry of detritus. Streamwater N and P decreased detrital C:N, whereas streamwater P had stronger negative effects on detrital C:P. Nutrient addition and fungal biomass reduced C:N by 70% and C:P by 83% on average after conditioning, compared to only 26% for C:N and 10% for C:P under pretreatment conditions. Detritus with lowest initial nutrient content changed the most and had greatest increases in total breakdown rates. Detrital stoichiometry was reduced and differences among detritus types were homogenized by nutrient enrichment. With enrichment, detrital nutrient content approached detritivore nutritional requirements and stimulated greater detritivore vs. microbial litter breakdown. We used breakpoint regression to estimate values of detrital stoichiometry that can potentially be used to indicate elevated breakdown rates. Breakpoint ratios for total breakdown were 41 (C:N) and 1518 (C:P), coinciding with total breakdown rates that were ~1.9 times higher when C:N or C:P fell below these breakpoints. Microbial and shredder‐mediated breakdown rates both increased when C:N and C:P were reduced, suggesting that detrital stoichiometry is useful for predicting litter breakdown dominated by either microbial or shredder activity. Our results show strong effects of nutrient enrichment on detrital stoichiometry and offer a robust link between a potential holistic nutrient loading metric (decreased and homogenized detrital stoichiometry) and increased C loss from stream ecosystems

    Overview of the spectrometer optical fiber feed for the Habitable-zone Planet Finder

    Full text link
    The Habitable-zone Planet Finder (HPF) is a highly stabilized fiber fed precision radial velocity (RV) spectrograph working in the Near Infrared (NIR): 810 - 1280 nm . In this paper we present an overview of the preparation of the optical fibers for HPF. The entire fiber train from the telescope focus down to the cryostat is detailed. We also discuss the fiber polishing, splicing and its integration into the instrument using a fused silica puck. HPF was designed to be able to operate in two modes, High Resolution (HR- the only mode mode currently commissioned) and High Efficiency (HE). We discuss these fiber heads and the procedure we adopted to attach the slit on to the HR fibers.Comment: Presented at 2018 SPIE Astronomical Telescopes + Instrumentation, Austin, Texas, USA. 18 pages, 25 figures, and 2 table

    Variability approaching the thermal limits can drive diatom community dynamics

    Get PDF
    Organismal distributions are largely mediated by temperature, suggesting thermal trait variability plays a key role in defining species\u27 niches. We employed a trait‐based approach to better understand how inter‐ and intraspecific thermal trait variability could explain diatom community dynamics using 24 strains from 5 species in the diatom genusSkeletonema, isolated from Narragansett Bay (NBay), where this genus can comprise up to 99% of the microplankton. Strain‐specific thermal reaction norms were generated using growth rates obtained at temperatures ranging from −2°C to 36°C. Comparison of thermal reaction norms revealed inter‐ and intraspecific similarities in the thermal optima, but significant differences approaching the thermal limits. Cellular elemental composition was determined for two thermally differentiated species and again, the most variation occurred approaching the thermal limits. To determine the potential impact of interspecific variability on community composition, a species succession model was formulated utilizing each species\u27 empirically determined thermal reaction norm and historical temperature data from NBay. Seasonal succession in the modeled community resembled the timing of species occurrence in the field, but not species\u27 relative abundance. The model correctly predicted the timing of the dominant winter–spring species, Skeletonema marinoi, within 0–14 d of its observed peak occurrence in the field. Interspecific variability approaching the thermal limits provides an alternative mechanism for temporal diatom succession, leads to altered cellular elemental composition, and thus has the potential to influence carbon flux and nutrient cycling, suggesting that growth approaching the thermal limits be incorporated into both empirical and modeling efforts in the future

    Anthropogenic versus fish‐derived nutrient effects on seagrass community structure and function

    Full text link
    Humans are altering nutrient dynamics through myriad pathways globally. Concurrent with the addition of nutrients via municipal, industrial, and agricultural sources, widespread consumer exploitation is changing consumer‐mediated nutrient dynamics drastically. Thus, altered nutrient dynamics can occur through changes in the supply of multiple nutrients, as well as through changes in the sources of these nutrients. Seagrass ecosystems are heavily impacted by human activities, with highly altered nutrient dynamics from multiple causes. We simulate scenarios of altered nutrient supply and ratios, nitrogen:phosphorus (N:P), from two nutrient sources in seagrass ecosystems: anthropogenic fertilizer and fish excretion. In doing so we tested expectations rooted in ecological theory that suggest the importance of resource dynamics for predicting primary producer dynamics. Ecosystem functions were strongly altered by artificial fertilizer (e.g., seagrass growth increased by as much as 140%), whereas plant/algae community structure was most affected by fish‐mediated nutrients or the interaction of both treatments (e.g., evenness increased by ~140% under conditions of low fish nutrients and high anthropogenic nutrients). Interactions between the nutrient sources were found for only two of six response variables, and the ratio of nutrient supply was the best predictor for only one response. These findings show that seagrass structure and function are well predicted by supply of a single nutrient (either N or P). Importantly, no single nutrient best explained the majority of responses—measures of community structure were best explained by the primary limiting nutrient to this system (P), whereas measures of growth and density of the dominant producer in the system were best explained by N. Thus, while our findings support aspects of theoretical expectations, the complexity of producer community responses belies broad generalities, underscoring the need to manage for multiple simultaneous nutrients in these imperiled coastal ecosystems.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/1/ecy2388_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/2/ecy2388-sup-0003-AppendixS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/3/ecy2388-sup-0005-AppendixS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/4/ecy2388-sup-0006-AppendixS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/5/ecy2388-sup-0001-AppendixS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/6/ecy2388-sup-0002-AppendixS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/7/ecy2388.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/145341/8/ecy2388-sup-0004-AppendixS4.pd

    Exploring cycad foliage as an archive of the isotopic composition of atmospheric nitrogen

    Get PDF
    Funding for this work was provided by a University of Washington Royalty Research Fund Grant (R.B.), National Science Foundation Graduate Research Fellowship DGE‐1256082 (M.A.K.), and German Research Foundation (DFG) Fellowship GE2558/3‐1 (M.M.G). Cyanobiont collection was funded by grant no. 265‐605 of the Australian Biodiversity and Resources Programme (M.M.G).Molecular nitrogen (N2) constitutes the majority of Earth's modern atmosphere, contributing ~0.79 bar of partial pressure (pN2). However, fluctuations in pN2 may have occurred on 107–109 year timescales in Earth's past, perhaps altering the isotopic composition of atmospheric nitrogen. Here, we explore an archive that may record the isotopic composition of atmospheric N2 in deep time: the foliage of cycads. Cycads are ancient gymnosperms that host symbiotic N2‐fixing cyanobacteria in modified root structures known as coralloid roots. All extant species of cycads are known to host symbionts, suggesting that this N2‐fixing capacity is perhaps ancestral, reaching back to the early history of cycads in the late Paleozoic. Therefore, if the process of microbial N2 fixation records the ή15N value of atmospheric N2 in cycad foliage, the fossil record of cycads may provide an archive of atmospheric ή15N values. To explore this potential proxy, we conducted a survey of wild cycads growing in a range of modern environments to determine whether cycad foliage reliably records the isotopic composition of atmospheric N2. We find that neither biological nor environmental factors significantly influence the ή15N values of cycad foliage, suggesting that they provide a reasonably robust record of the ή15N of atmospheric N2. Application of this proxy to the record of carbonaceous cycad fossils may not only help to constrain changes in atmospheric nitrogen isotope ratios since the late Paleozoic, but also could shed light on the antiquity of the N2‐fixing symbiosis between cycads and cyanobacteria.PostprintPeer reviewe

    Rewiring coral: Anthropogenic nutrients shift diverse coral–symbiont nutrient and carbon interactions toward symbiotic algal dominance

    Full text link
    Improving coral reef conservation requires heightened understanding of the mechanisms by which coral cope with changing environmental conditions to maintain optimal health. We used a long‐term (10 month) in situ experiment with two phylogenetically diverse scleractinians (Acropora palmata and Porites porites) to test how coral–symbiotic algal interactions changed under real‐world conditions that were a priori expected to be beneficial (fish‐mediated nutrients) and to be harmful, but non‐lethal, for coral (fish + anthropogenic nutrients). Analyzing nine response variables of nutrient stoichiometry and stable isotopes per coral fragment, we found that nutrients from fish positively affected coral growth, and moderate doses of anthropogenic nutrients had no additional effects. While growing, coral maintained homeostasis in their nutrient pools, showing tolerance to the different nutrient regimes. Nonetheless, structural equation models revealed more nuanced relationships, showing that anthropogenic nutrients reduced the diversity of coral–symbiotic algal interactions and caused nutrient and carbon flow to be dominated by the symbiont. Our findings show that nutrient and carbon pathways are fundamentally “rewired” under anthropogenic nutrient regimes in ways that could increase corals’ susceptibility to further stressors. We hypothesize that our experiment captured coral in a previously unrecognized transition state between mutualism and antagonism. These findings highlight a notable parallel between how anthropogenic nutrients promote symbiont dominance with the holobiont, and how they promote macroalgal dominance at the coral reef scale. Our findings suggest more realistic experimental conditions, including studies across gradients of anthropogenic nutrient enrichment as well as the incorporation of varied nutrient and energy pathways, may facilitate conservation efforts to mitigate coral loss.We provide a long‐term field experiment to test the implications of different nutrient sources, fish excretion and moderate levels of anthropogenic nutrients, for coral health and coral–symbiont interactions. Our study identifies a potentially novel "transition state" whereby despite maintaining high growth rates and creating no apparent negative external effects, anthropogenic nutrient enrichment drives coral–algal interactions to be dominated by the algal symbiont—that is, increased prominence of energy and nutrient flow from the algal symbiont under conditions of Fish + anthropogenic nutrients (NPK) in the figure. We hypothesize that this “rewiring” of the coral–symbiont interactions may render the coral more vulnerable to additional stressors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/162733/2/gcb15230_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162733/1/gcb15230.pd
    • 

    corecore