21,185 research outputs found

    Error enhancement in geomagnetic models derived from scalar data

    Get PDF
    Models of the main geomagnetic field are generally represented by a scalar potential gamma expanded in a finite number of spherical harmonics. Very accurate observations of F were used, but indications exist that the accuracy of models derived from them is considerably lower. One problem is that F does not always characterize gamma uniquely. It is not clear whether such ambiguity can be encountered in deriving gamma from F in geomagnetic surveys, but there exists a connection, due to the fact that the counterexamples of Backus are related to the dipole field, while the geomagnetic field is dominated by its dipole component. If the models are recovered with a finite error (i.e. they cannot completely fit the data and consequently have a small spurious component), this connection allows the error in certain sequences of harmonic terms in gamma to be enhanced without unduly large effects on the fit of F to the model

    Observation of fast stochastic ion heating by drift waves

    Get PDF
    Anomalously fast ion heating has been observed in the Caltech Encore tokamak [Phys. Rev. Lett. 59, 1436 (1987)], with the use of laser-induced fluorescence. This heating was found to be independent of electron temperature, but was well correlated with the presence of large-amplitude drift-Alfvén waves. Evidence is presented that suggests that the heating is stochastic and occurs when the ion displacement due to polarization drift becomes comparable to the perpendicular wavelength, i.e., when k[perpendicular] (mik[perpendicular] phi0/qB^2)~1. Stochastic heating may also be the cause of the anomalously high ion temperatures observed in reversed-field pinches

    Observations of fast anisotropic ion heating, ion cooling, and ion recycling in large-amplitude drift waves

    Get PDF
    Large-amplitude drift wave fluctuations are observed to cause severe ion temperature oscillations in plasmas of the Caltech Encore tokamak [J. M. McChesney, P. M. Bellan, and R. A. Stern, Phys. Fluids B 3, 3370 (1991)]. Experimental investigations of the complete ion dynamical behavior in these waves are presented. The wave electric field excites stochastic ion orbits in the plane normal (perpendicular to) to B, resulting in rapid perpendicular to heating. Ion-ion collisions impart energy along (parallel to) B, relaxing the perpendicular to-parallel to temperature anisotropy. Hot ions with large orbit radii escape confinement, reaching the chamber wall and cooling the distribution. Cold ions from the plasma edge convect back into the plasma (i.e., recycle), causing further cooling and significantly replenishing the density depleted by orbit losses. The ion-ion collision period tau(ii)similar to Tau(3/2)/n fluctuates strongly with the drift wave phase, due to intense (approximate to 50%) fluctuations in n and Tau. Evidence for particle recycling is given by observations of bimodal ion velocity distributions near the plasma edge, indicating the presence of cold ions (0.4 eV) superposed atop the hot (4-8 eV) plasma background. These appear periodically, synchronous with the drift wave phase at which ion fluid flow from the wall toward the plasma center peaks. Evidence is presented that such a periodic heat/loss/recycle/cool process is expected in plasmas with strong stochastic heating

    Clausius-Clapeyron relations for first-order phase transitions in bilayer quantum Hall systems

    Get PDF
    A bilayer system of two-dimensional electron gases in a perpendicular magnetic field exhibits rich phenomena. At total filling factor ν_(tot)=1, as one increases the layer separation, the bilayer system goes from an interlayer-coherent exciton condensed state to an incoherent phase of, most likely, two decoupled composite-fermion Fermi liquids. Many questions still remain as to the nature of the transition between these two phases. Recent experiments have demonstrated that spin plays an important role in this transition. Assuming that there is a direct first-order transition between the spin-polarized interlayer-coherent quantum Hall state and spin partially polarized composite Fermi-liquid state, we calculate the phase boundary (d/l)_c as a function of parallel magnetic field, NMR/heat pulse, temperature, and density imbalance, and compare with experimental results. Remarkably good agreement is found between theory and various experiments

    Real-time phase-selective data acquisition system for measurement of wave phenomena in pulsed plasma discharges

    Get PDF
    A novel data acquisition system and methodology have been developed for the study of wave phenomena in pulsed plasma discharges. The method effectively reduces experimental uncertainty due to shot-to-shot fluctuations in high repetition rate experiments. Real-time analysis of each wave form allows classification of discharges by wave amplitude, phase, or other features. Measurements can then be constructed from subsets of discharges having similar wave properties. The method clarifies the trade-offs between experimental uncertainty reduction and increased demand for data storage capacity and acquisition time. Finally, this data acquisition system is simple to implement and requires relatively little equipment: only a wave form digitizer and a moderately fast computer

    Preliminary results of noble metal thermocouple research program, 1000 - 2000 C

    Get PDF
    Noble metal thermocouple research involving combustion gase

    Maternal Expression Relaxes Constraint on Innovation of the Anterior Determinant, bicoid

    Get PDF
    The origin of evolutionary novelty is believed to involve both positive selection and relaxed developmental constraint. In flies, the redesign of anterior patterning during embryogenesis is a major developmental innovation and the rapidly evolving Hox gene, bicoid (bcd), plays a critical role. We report evidence for relaxation of selective constraint acting on bicoid as a result of its maternal pattern of gene expression. Evolutionary theory predicts 2-fold greater sequence diversity for maternal effect genes than for zygotically expressed genes, because natural selection is only half as effective acting on autosomal genes expressed in one sex as it is on genes expressed in both sexes. We sample an individual from ten populations of Drosophila melanogaster and nine populations of D. simulans for polymorphism in the tandem gene duplicates bcd, which is maternally expressed, and zerknüllt (zen), which is zygotically expressed. In both species, we find the ratio of bcd to zen nucleotide diversity to be two or more in the coding regions but one in the noncoding regions, providing the first quantitative support for the theoretical prediction of relaxed selective constraint on maternal-effect genes resulting from sex-limited expression. Our results suggest that the accelerated rate of evolution observed for bcd is owing, at least partly, to variation generated by relaxed selective constraint

    Juncture stress fields in multicellular shell structures. Volume III - Stresses and deformations on fixed-edge segmental conical shells Final report

    Get PDF
    Equations for thin elastic conical shells and digital program for analysis of stress and deformation on fixed edge segmental conical shells - solution by finite difference techniqu
    corecore