22,535 research outputs found

    Stress intensity at a crack between bonded dissimilar materials

    Get PDF
    The contour integral method is extended to general boundary value problems involving imperfect bonding of dissimilar materials. The loading and restraints are shown to have a significant effect on the stress intensity. Example problems are presented to illustrate the results

    A method for determining an optimum shape of a class of thin shells of revolution

    Get PDF
    Optimum shape of convex thin shell of revolution with respect to volume, weight and length - mathematical functio

    Antiferromagnetic s-d exchange coupling in GaMnAs

    Full text link
    Measurements of coherent electron spin dynamics in Ga(1-x)Mn(x)As/Al(0.4)Ga(0.6)As quantum wells with 0.0006% < x < 0.03% show an antiferromagnetic (negative) exchange bewteen s-like conduction band electrons and electrons localized in the d-shell of the Mn2+ impurities. The magnitude of the s-d exchange parameter, N0 alpha, varies as a function of well width indicative of a large and negative contribution due to kinetic exchange. In the limit of no quantum confinement, N0 alpha extrapolates to -0.09 +/- 0.03 eV indicating that antiferromagnetic s-d exchange is a bulk property of GaMnAs. Measurements of the polarization-resolved photoluminescence show strong discrepancy from a simple model of the exchange enhanced Zeeman splitting, indicative of additional complexity in the exchange split valence band.Comment: 5 pages, 4 figures and one action figur

    The Discovery of Argon in Comet C/1995 O1 (Hale-Bopp)

    Get PDF
    On 30.14 March 1997 we observed the EUV spectrum of the bright comet C/1995 O1 (Hale-Bopp) at the time of its perihelion, using our EUVS sounding rocket telescope/spectrometer. The spectra reveal the presence H Ly beta, O+, and, most notably, Argon. Modelling of the retrieved Ar production rates indicates that comet Hale-Bopp is enriched in Ar relative to cosmogonic expectations. This in turn indicates that Hale-Bopp's deep interior has never been exposed to the 35-40 K temperatures necessary to deplete the comet's primordial argon supply.Comment: 9 pages, 2 figures. ApJ, 545, in press (2000

    Cancer therapeutic potential of combinatorial immuno- and vaso-modulatory interventions

    Get PDF
    Currently, most of the basic mechanisms governing tumor-immune system interactions, in combination with modulations of tumor-associated vasculature, are far from being completely understood. Here, we propose a mathematical model of vascularized tumor growth, where the main novelty is the modeling of the interplay between functional tumor vasculature and effector cell recruitment dynamics. Parameters are calibrated on the basis of different in vivo immunocompromised Rag1-/- and wild-type (WT) BALB/c murine tumor growth experiments. The model analysis supports that tumor vasculature normalization can be a plausible and effective strategy to treat cancer when combined with appropriate immuno-stimulations. We find that improved levels of functional tumor vasculature, potentially mediated by normalization or stress alleviation strategies, can provide beneficial outcomes in terms of tumor burden reduction and growth control. Normalization of tumor blood vessels opens a therapeutic window of opportunity to augment the antitumor immune responses, as well as to reduce the intratumoral immunosuppression and induced-hypoxia due to vascular abnormalities. The potential success of normalizing tumor-associated vasculature closely depends on the effector cell recruitment dynamics and tumor sizes. Furthermore, an arbitrary increase of initial effector cell concentration does not necessarily imply a better tumor control. We evidence the existence of an optimal concentration range of effector cells for tumor shrinkage. Based on these findings, we suggest a theory-driven therapeutic proposal that optimally combines immuno- and vaso-modulatory interventions

    Characterization of submillimetre quasi-optical twin-slot double-junction SIS mixers

    Get PDF
    We report on the continuing development of submillimetre quasi-optical slot antenna SIS mixers, which use two-junction tuning circuits. Direct and heterodyne Fourier transform spectrometer measurements have been performed to compare device performance with predictions. Demonstrated double-sideband receiver noise temperatures of better than 540 K at 808 GHz make these SIS mixers substantially better than GaAs Schottky receivers for the astronomically important CI and CO transitions near 810 GHz

    NMR evidence for a strong modulation of the Bose-Einstein Condensate in BaCuSi2_2O6_6

    Full text link
    We present a 63,65^{63,65}Cu and 29^{29}Si NMR study of the quasi-2D coupled spin 1/2 dimer compound BaCuSi2_2O6_6 in the magnetic field range 13-26 T and at temperatures as low as 50 mK. NMR data in the gapped phase reveal that below 90 K different intra-dimer exchange couplings and different gaps (ΔB/ΔA\Delta_{\rm{B}}/\Delta_{\rm{A}} = 1.16) exist in every second plane along the c-axis, in addition to a planar incommensurate (IC) modulation. 29^{29}Si spectra in the field induced magnetic ordered phase reveal that close to the quantum critical point at Hc1H_{\rm{c1}} = 23.35 T the average boson density nˉ\bar{n} of the Bose-Einstein condensate is strongly modulated along the c-axis with a density ratio for every second plane nˉA/nˉB≃5\bar{n}_{\rm{A}}/\bar{n}_{\rm{B}} \simeq 5. An IC modulation of the local density is also present in each plane. This adds new constraints for the understanding of the 2D value ϕ\phi = 1 of the critical exponent describing the phase boundary

    Not Just a Theory—The Utility of Mathematical Models in Evolutionary Biology

    Get PDF
    Models have made numerous contributions to evolutionary biology, but misunderstandings persist regarding their purpose. By formally testing the logic of verbal hypotheses, proof-of-concept models clarify thinking, uncover hidden assumptions, and spur new directions of study. thumbnail image credit: modified from the Biodiversity Heritage Librar

    Broad Iron Emission from Gravitationally Lensed Quasars Observed by Chandra

    Get PDF
    Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0<z<4.5 observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local AGN, we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3-sigma level. This implies that iron emission from the inner disk is relatively common in the population of lensed quasars, and in turn further demonstrates that, with additional observations, this population represents an opportunity to significantly extend the sample of AGN spin measurements out to high-redshift.Comment: 5 pages, 2 figures, accepted for publication in Ap
    • …
    corecore