19,029 research outputs found

    Growing Hair on the extremal BTZBTZ black hole

    Full text link
    We show that the nonlinear σ\sigma-model in an asymptotically AdS3AdS_3 space-time admits a novel local symmetry. The field action is assumed to be quartic in the nonlinear σ\sigma-model fields and minimally coupled to gravity. The local symmetry transformation simultaneously twists the nonlinear σ\sigma-model fields and changes the space-time metric, and it can be used to map an extremal BTZBTZ black hole to infinitely many hairy black hole solutions.Comment: 11 pages, 1 figure, minor corrections include

    Hybridized polymer matrix composite

    Get PDF
    Under certain conditions of combined fire and impact, graphite fibers are released to the atmosphere by graphite fiber composites. The retention of graphite fibers in these situations is investigated. Hybrid combinations of graphite tape and cloth, glass cloth, and resin additives are studied with resin systems. Polyimide resins form the most resistant composites and resins based on simple novolac epoxies the least resistant of those tested. Great improvement in the containment of the fibers is obtained in using graphite/glass hybrids, and nearly complete prevention of individual fiber release is made possible by the use of resin additives

    Noncommutative BTZ Black Hole and Discrete Time

    Get PDF
    We search for all Poisson brackets for the BTZ black hole which are consistent with the geometry of the commutative solution and are of lowest order in the embedding coordinates. For arbitrary values for the angular momentum we obtain two two-parameter families of contact structures. We obtain the symplectic leaves, which characterize the irreducible representations of the noncommutative theory. The requirement that they be invariant under the action of the isometry group restricts to R×S1R\times S^1 symplectic leaves, where RR is associated with the Schwarzschild time. Quantization may then lead to a discrete spectrum for the time operator.Comment: 10 page

    ON THE GEOMETRY OF THE X-RAY EMITTING REGION IN SEYFERT GALAXIES

    Get PDF
    For the first time, detailed radiative transfer calculations of Comptonized X-ray and gamma-ray radiation in a hot pair plasma above a cold accretion disk are performed using two independent codes and methods. The simulations include both energy and pair balance as well as reprocessing of the X- and gamma-rays by the cold disk. We study both plane-parallel coronae as well as active dissipation regions having shapes of hemispheres and pill boxes located on the disk surface. It is shown, contrary to earlier claims, that plane-parallel coronae in pair balance have difficulties in selfconsistently reproducing the ranges of 2-20 keV spectral slopes, high energy cutoffs, and compactnesses inferred from observations of type 1 Seyfert galaxies. Instead, the observations are consistent with the X-rays coming from a number of individual active regions located on the surface of the disk. A number of effects such as anisotropic Compton scattering, the reflection hump, feedback to the soft photon source by reprocessing, and an active region in pair equilibrium all conspire to produce the observed ranges of X-ray slopes, high energy cutoffs, and compactnesses. The spread in spectral X-ray slopes can be due to a spread in the properties of the active regions such as their compactnesses and their elevations above the disk surface. Simplified models invoking isotropic Comptonization in spherical clouds are no longer sufficient when interpreting the data.Comment: 9 pages, 3 postscript figures, figures can be obtained from the authors via e-mail: [email protected]

    Properties of Quantum Hall Skyrmions from Anomalies

    Full text link
    It is well known that the Fractional Quantum Hall Effect (FQHE) may be effectively represented by a Chern-Simons theory. In order to incorporate QH Skyrmions, we couple this theory to the topological spin current, and include the Hopf term. The cancellation of anomalies for chiral edge states, and the proviso that Skyrmions may be created and destroyed at the edge, fixes the coefficients of these new terms. Consequently, the charge and the spin of the Skyrmion are uniquely determined. For those two quantities we find the values eνNSkye\nu N_{Sky} and νNSky/2\nu N_{Sky}/2, respectively, where ee is electron charge, ν\nu is the filling fraction and NSkyN_{Sky} is the Skyrmion winding number. We also add terms to the action so that the classical spin fluctuations in the bulk satisfy the standard equations of a ferromagnet, with spin waves that propagate with the classical drift velocity of the electron.Comment: 8 pages, LaTeX file; Some remarks are included to clarify the physical results obtained, and the role of the Landau-Lifshitz equation is emphasized. Some references adde

    Electronic dummy for acoustical testing

    Get PDF
    Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal

    Extreme 18O-enrichment in majorite constrains a crustal origin of transition zone diamonds

    Get PDF
    The fate of subducted oceanic lithosphere and its role in the planet-scale geochemical cycle is a key problem in solid Earth studies. Asthenospheric and transition zone minerals included in diamond have been interpreted as representing subducted oceanic crust based on inclusion REE patterns and strong 13C depletion of their host diamond (δ13C as low as -23 ‰). This view/explanation, however, has been challenged by alternative interpretations that variable carbon isotopic compositions either result from high temperature fractionation involving carbides, or reflect primordial, unhomogenised mantle reservoirs. Here, we present the first oxygen isotope analyses of inclusions in such ultradeep diamonds – majoritic garnets in diamond from Jagersfontein (South Africa). The oxygen isotope compositions provide unambiguous evidence for derivation of the inclusions from subducted crustal materials. The δ18OVSMOW values of the majorites range from +8.6 ‰ to +10.0 ‰, well outside that of ambient mantle (+5.5 ±0.4 ‰) and indicate that the protoliths were very heavily weathered at relatively low temperatures. When this information is combined with the broadly eclogitic composition of the majoritic garnets, a derivation from subducted sea-floor basalts is implied. Based on the association between the heavy oxygen and light carbon, the light carbon isotope composition cannot relate to deep mantle processes and is also ultimately derived from the crust

    Composite Fermions with Orbital Magnetization

    Full text link
    For quantum Hall systems, in the limit of large magnetic field (or equivalently small electron band mass mbm_b), the static response of electrons to a spatially varying magnetic field is largely determined by kinetic energy considerations. This response is not correctly given in existing approximations based on the Fermion Chern-Simons theory of the partially filled Landau level. We remedy this problem by attaching an orbital magnetization to each fermion to separate the current into magnetization and transport contributions, associated with the cyclotron and guiding center motions respectively. This leads to a Chern-Simons Fermi liquid description of the ν=12m\nu=\frac{1}{2m} state which correctly predicts the mbm_b dependence of the static and dynamic response in the limit mb0m_b \rightarrow 0.Comment: 4 pages, RevTeX, no figure
    corecore