141 research outputs found

    Potential Interactions Between Diatoms and Bacteria are Shaped by Trace Element Gradients in the Southern Ocean

    Get PDF
    The growth of diatoms in the Southern Ocean, especially the region surrounding the West Antarctic Peninsula, is frequently constrained by low dissolved iron and other trace metal concentrations. This challenge may be overcome by mutualisms between diatoms and co-occurring associated bacteria, in which diatoms produce organic carbon as a substrate for bacterial growth, and bacteria produce siderophores, metal-binding ligands that can supply diatoms with metals upon uptake as well as other useful secondary compounds for diatom growth like vitamins. To examine the relationships between diatoms and bacteria in the plankton (diatom) size class (\u3e 3 mu m), we sampled both bacterial and diatom community composition with accompanying environmental metadata across a naturally occurring concentration gradient of macronutrients, trace metals and siderophores at 21 stations near the West Antarctic Peninsula (WAP). Offshore Drake Passage stations had low dissolved iron (0.33 ± 0.15 nM), while the stations closer to the continental margin had higher dissolved iron (5.05 ± 1.83 nM). A similar geographic pattern was observed for macronutrients and most other trace metals measured, but there was not a clear inshore-offshore gradient in siderophore concentrations. The diatom and bacteria assemblages, determined using 18S and 16S rDNA sequencing respectively, were similar by location sampled, and variance in both assemblages was driven in part by concentrations of soluble reactive phosphorous, dissolved manganese, and dissolved copper, which were all higher near the continent. Some of the most common diatom sequence types observed were Thalassiosira and Fragilariopsis, and bacteria in the plankton size fraction were most commonly Bacteroidetes and Gammaproteobacteria. Network analysis showed positive associations between diatoms and bacteria, indicating possible in situ mutualisms through strategies such as siderophore and vitamin biosynthesis and exchange. This work furthers the understanding of how naturally occurring gradients of metals and nutrients influence diatom-bacteria interactions. Our data suggest that distinct groups of diatoms and associated bacteria are interacting under different trace metal regimes in the WAP, and that diatoms with different bacterial partners may have different modes of biologically supplied trace metals

    Interactions of Bioactive Trace Metals in Shipboard Southern Ocean Incubation Experiments

    Get PDF
    In the Southern Ocean, it is well‐known that iron (Fe) limits phytoplankton growth. Yet, other trace metals can also affect phytoplankton physiology. This study investigated feedbacks between phytoplankton growth and dissolved Fe, manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd) concentrations in Southern Ocean shipboard incubations. Three experiments were conducted in September–October 2016 near the West Antarctic Peninsula: Incubations 1 and 3 offshore in the Antarctic Circumpolar Current, and Incubation 2 inshore in Bransfield Strait. Additions of Fe and/or vitamin B12 to inshore and offshore waters were employed and allowed assessment of metal (M) uptake relative to soluble reactive phosphorus (P) across a wide range of initial conditions. Offshore, treatments of \u3e1 nmol L−1 added Fe were Fe‐replete, whereas inshore waters were already Fe‐replete. Results suggest Mn was a secondary limiting nutrient inshore and offshore. No Fe‐vitamin B12 colimitation was observed. Overall, M:P uptake in the incubations was closely related to initial dissolved M:P for Fe, Mn, Co, Ni, and Cd, and for Cu inshore. Final concentrations of Fe and Zn were similar across light treatments of the experiments despite very different phytoplankton responses, and we observed evidence for Co/Cd/Zn substitution and for recycling of biogenic metals as inventories plateaued. In dark bottles, the absence of Mn oxidation may have allowed more efficient recycling of Fe and other trace metals. Our results provide insight into factors governing trace metal uptake, with implications for phytoplankton community composition locally and preformed micronutrient bioavailability in Southern Ocean water masses

    Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe

    Get PDF
    Since the 1950s, Europe has undergone large shifts in climate and land cover. Previous assessments of past and future changes in evapotranspiration or streamflow have either focussed on land use/cover or climate contributions or on individual catchments under specific climate conditions, but not on all aspects at larger scales. Here, we aim to understand how decadal changes in climate (e.g. precipitation, temperature) and land use (e.g. deforestation/afforestation, urbanization) have impacted the amount and distribution of water resource availability (both evapotranspiration and streamflow) across Europe since the 1950s. To this end, we simulate the distribution of average evapotranspiration and streamflow at high resolution (1 km²) by combining (a) a steady-state Budyko model for water balance partitioning constrained by long-term (lysimeter) observations across different land use types, (b) a novel decadal high-resolution historical land use reconstruction, and (c) gridded observations of key meteorological variables. The continental-scale patterns in the simulations agree well with coarser-scale observation-based estimates of evapotranspiration and also with observed changes in streamflow from small basins across Europe. We find that strong shifts in the continental-scale patterns of evapotranspiration and streamflow have occurred between the period around 1960 and 2010. In much of central-western Europe, our results show an increase in evapotranspiration of the order of 5 %–15% between 1955–1965 and 2005–2015, whereas much of the Scandinavian peninsula shows increases exceeding 15 %. The Iberian Peninsula and other parts of the Mediterranean show a decrease of the order of 5 %–15 %. A similar north– south gradient was found for changes in streamflow, although changes in central-western Europe were generally small. Strong decreases and increases exceeding 45% were found in parts of the Iberian and Scandinavian peninsulas, respectively. In Sweden, for example, increased precipitation is a larger driver than large-scale reforestation and afforestation, leading to increases in both streamflow and evapotranspiration. In most of the Mediterranean, decreased precipitation combines with increased forest cover and potential evapotranspiration to reduce streamflow. In spite of considerable local- and regional-scale complexity, the response of net actual evapotranspiration to changes in land use, precipitation, and potential evaporation is remarkably uniform across Europe, increasing by ~35–60 km³ yr¯¹, equivalent to the discharge of a large river. For streamflow, effects of changes in precipitation (~95 km³ yr¯¹) dominate land use and potential evapotranspiration contributions (~45–60 km³ yr¯¹). Locally, increased forest cover, forest stand age, and urbanization have led to significant decreases and increases in available streamflow, even in catchments that are considered to be near-natural

    Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Get PDF
    Climate warming is projected to affect forest water yields but the effects are expected to vary. We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm periods. Using the theoretical framework of the Budyko curve, we calculated the effects of climate warming on the annual partitioning of precipitation (P) into evapotranspiration (ET) and water yield. Deviation (d) was defined as a catchment’s change in actual ET divided by P [AET/P; evaporative index (EI)] coincident with a shift from a cool to a warm period – a positive d indicates an upward shift in EI and smaller than expected water yields, and a negative d indicates a downward shift in EI and larger than expected water yields. Elasticity was defined as the ratio of inter annual variation in potential ET divided by P (PET/P; dryness index) to inter annual variation in the EI – high elasticity indicates low d despite large range in drying index (i.e., resilient water yields), low elasticity indicates high d despite small range in drying index (i.e., non-resilient water yields). Although the data needed to fully evaluate ecosystems based on these metrics are limited, we were able to identify some characteristics of response among forest types. Alpine sites showed the greatest sensitivity to climate warming with any warming leading to increased water yields. Conifer forests included catchments with lowest elasticity and stable to larger water yields. Deciduous forests included catchments with intermediate elasticity and stable to smaller water yields. Mixed coniferous/deciduous forests included catchments with highest elasticity and stable water yields. Forest type appeared to influence the resilience of catchment water yields to climate warming, with conifer and deciduous catchments more susceptible to climate warming than the more diverse mixed forest catchments

    Brains studying brains: look before you think in vision

    Get PDF
    Using our own brains to study our brains is extraordinary. For example, in vision this makes us naturally blind to our own blindness, since our impression of seeing our world clearly is consistent with our ignorance of what we do not see. Our brain employs its 'conscious' part to reason and make logical deductions using familiar rules and past experience. However, human vision employs many 'subconscious' brain parts that follow rules alien to our intuition. Our blindness to our unknown unknowns and our presumptive intuitions easily lead us astray in asking and formulating theoretical questions, as witnessed in many unexpected and counter-intuitive difficulties and failures encountered by generations of scientists. We should therefore pay a more than usual amount of attention and respect to experimental data when studying our brain. I show that this can be productive by reviewing two vision theories that have provided testable predictions and surprising insights

    Without Apology: Writings on Abortion in Canada

    Get PDF
    Until the late 1960s, the authorities on abortion were for the most part men—politicians, clergy, lawyers, physicians, all of whom had an interest in regulating women’s bodies. Even today, when we hear women speak publicly about abortion, the voices are usually those of the leaders of women’s and abortion rights organizations, women who hold political office, and, on occasion, female physicians. We also hear quite frequently from spokeswomen for anti-abortion groups. Rarely, however, do we hear the voices of ordinary women—women whose lives have been in some way touched by abortion. Their thoughts typically owe more to human circumstance than to ideology, and without them, we run the risk of thinking and talking about the issue of abortion only in the abstract. Without Apology seeks to address this issue by gathering the voices of activists, feminists, and scholars as well as abortion providers and clinic support staff alongside the stories of women whose experience with abortion is more personal. With the particular aim of moving beyond the polarizing rhetoric that has characterized the issue of abortion and reproductive justice for so long, Without Apology is an engrossing and arresting account that will promote both reflection and discussion.Canada Council for the Arts Government of Canada Canada Book Fund (CFB) Government of Alberta, Alberta Media Fun

    Hunting and mountain sheep: do current harvest practices affect horn growth?

    Get PDF
    The influence of human harvest on evolution of secondary sexual characteristics has implications for sustainable management of wildlife populations. The phenotypic consequences of selectively removing males with large horns or antlers from ungulate populations has been a topic of heightened concern in recent years. Harvest can affect size of horn‐like structures in two ways: 1) shifting age structure toward younger age classes, which can reduce the mean size of horn‐like structures; or 2) selecting against genes that produce large, fast‐growing males. We evaluated effects of age, climatic and forage conditions, and metrics of harvest on horn size and growth of mountain sheep (Ovis canadensis ssp.) in 72 hunt areas across North America from 1981 to 2016. In 50% of hunt areas, changes in mean horn size during the study period were related to changes in age structure of harvested sheep. Environmental conditions explained directional changes in horn growth in 28% of hunt areas, 7% of which did not exhibit change before accounting for effects of the environment. After accounting for age and environment, horn size of mountain sheep was stable or increasing in the majority (~78%) of hunt areas. Age‐specific horn size declined in 44% of hunt areas where harvest was regulated solely by morphological criteria, which supports the notion that harvest practices that are simultaneously selective and intensive might lead to changes in horn growth. Nevertheless, phenotypic consequences are not a foregone conclusion in the face of selective harvest; over half of the hunt areas with highly selective and intensive harvest did not exhibit age‐specific declines in horn size. Our results demonstrate that while harvest regimes are an important consideration, horn growth of harvested male mountain sheep has remained largely stable, indicating that changes in horn growth patterns are an unlikely consequence of harvest across most of North America
    corecore