575 research outputs found

    Photometric study of selected cataclysmic variables II. Time-series photometry of nine systems

    Full text link
    We present time-series photometry of nine cataclysmic variables: EI UMa, V844Her, V751 Cyg, V516 Cyg, GZ Cnc, TY Psc, V1315 Aql, ASAS J002511+1217.12, V1315 Aql and LN UMa. The observations were conducted at various observatories, covering 170 hours and comprising 7,850 data points in total. For the majority of targets we confirm previously reported periodicities and for some of them we give, for the first time, their spectroscopic orbital periods. For those dwarf-nova systems which we observed during both quiescence and outburst, the increase in brightness was followed by a decrease in the amount of flickering. Quasi-periodic oscillations have either been discovered, or were confirmed. For the eclipsing system V1315 Aql we have covered 9 eclipses, and obtained a refined orbital ephemeris. We find that, during its long baseline of observations, no change in the orbital period of this system has occurred. V1315 Aql also shows eclipses of variable depth.Comment: 30 pages, 16 figures, 4 tables. Submitted to JA

    Investigations of the Non-Linear LMC Cepheid Period-Luminosity Relation with Testimator and Schwarz Information Criterion Methods

    Full text link
    In this paper, we investigate the linearity versus non-linearity of the Large Magellanic Cloud (LMC) Cepheid period-luminosity (P-L) relation using two statistical approaches not previously applied to this problem: the testimator method and the Schwarz Information Criterion (SIC). The testimator method is extended to multiple stages for the first time, shown to be unbiased and the variance of the estimated slope can be proved to be smaller than the standard slope estimated from linear regression theory. The Schwarz Information Criterion (also known as the Bayesian Information Criterion) is more conservative than the Akaike Information Criterion and tends to choose lower order models. By using simulated data sets, we verify that these statistical techniques can be used to detect intrinsically linear and/or non-linear P-L relations. These methods are then applied to independent LMC Cepheid data sets from the OGLE project and the MACHO project, respectively. Our results imply that there is a change of slope in longer period ranges for all of the data sets. This strongly supports previous results, obtained from independent statistical tests, that the observed LMC P-L relation is non-linear with a break period at/around 10 days.Comment: 9 pages, 5 figures and 3 tables, PASP accepte

    CCD time-series photometry of BQ Ind

    Get PDF
    We present CCD time-series photometry of BQ Ind, which is either a Population I large-amplitude δ Scuti star or an SX Phoenicis star

    First detection of phase-dependent colliding wind X-ray emission outside the Milky Way

    Get PDF
    After having reported the detection of X-rays emitted by the peculiar system HD5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the dominant source of the X-rays is not associated with the ejecta.Comment: 13 pages, 3 figures and 1 table, accepted for publication in ApJ (letters

    X-ray Light Curves and Accretion Disk Structure of EX Hydrae

    Full text link
    We present X-ray light curves for the cataclysmic variable EX Hydrae obtained with the Chandra High Energy Transmission Grating Spectrometer and the Extreme Ultraviolet Explorer Deep Survey photometer. We confirm earlier results on the shape and amplitude of the binary light curve and discuss a new feature: the phase of the minimum in the binary light curve, associated with absorption by the bulge on the accretion disk, increases with wavelength. We discuss several scenarios that could account for this trend and conclude that, most likely, the ionization state of the bulge gas is not constant, but rather decreases with binary phase. We also conclude that photoionization of the bulge by radiation originating from the white dwarf is not the main source of ionization, but that it is heated by shocks originating from the interaction between the inflowing material from the companion and the accretion disk. The findings in this paper provide a strong test for accretion disk models in close binary systems.Comment: 19 pages, 4 figures, accepted for publication in the Ap

    Long-Term Optical Monitoring of Eta Carinae. Multiband light curves for a complete orbital period

    Full text link
    The periodicity of 5.5 years for some observational events occurring in Eta Carinae manifests itself across a large wavelength range and has been associated with its binary nature. These events are supposed to occur when the binary components are close to periastron. To detect the previous periastron passage of Eta Car in 2003, we started an intensive, ground-based, optical, photometric observing campaign. We continued observing the object to monitor its photometric behavior and variability across the entire orbital cycle. Our observation program consisted of daily differential photometry from CCD images, which were acquired using a 0.8 m telescope and a standard BVRI filter set at La Plata Observatory. The photometry includes the central object and the surrounding Homunculus nebula. We present up-to-date results of our observing program, including homogeneous photometric data collected between 2003 and 2008. Our observations demonstrated that Eta Car has continued increasing in brightness at a constant rate since 1998. In 2006, it reached its brightest magnitude (V ~ 4.7) since about 1860s. The object then suddenly reverted its brightening trend, fading to V = 5.0 at the beginning of 2007, and has maintained a quite steady state since then. We continue the photometric monitoring of Eta Car in anticipation of the next "periastron passage", predicted to occur at the beginning of 2009.Comment: Accepted by A&A. The paper contains 3 figures and 2 table

    Long-term spectroscopic monitoring of the Luminous Blue Variable HD160529

    Full text link
    We have spectroscopically monitored the galactic Luminous Blue Variable HD 160529 and obtained an extensive high-resolution data set that covers the years 1991 to 2002. During this period, the star evolved from an extended photometric minimum phase towards a new visual maximum. In several observing seasons, we covered up to four months with almost daily spectra. Our spectra typically cover most of the visual spectral range with a high spectral resolution (about 20,000 or more). This allows us to investigate the variability in many lines and on many time scales from days to years. We find a correlation between the photospheric HeI lines and the brightness of the star, both on a time scale of months and on a time scale of years. The short-term variations are smaller and do not follow the long-term trend, strongly suggesting different physical mechanisms. Metal lines also show both short-term and long-term variations in strength and also a long-term trend in radial velocity. Most of the line-profile variations can be attributed to changing strengths of lines. Propagating features in the line profiles are rarely observed. We find that the mass-loss rate of HD 160529 is almost independent of temperature, i.e. visual brightness.Comment: 14 pages, 15 figures, accepted for publication in Astronomy & Astrophysic
    corecore