1,492 research outputs found

    Multiple scattering of ultrasound in weakly inhomogeneous media: application to human soft tissues

    Full text link
    Waves scattered by a weakly inhomogeneous random medium contain a predominant single scattering contribution as well as a multiple scattering contribution which is usually neglected, especially for imaging purposes. A method based on random matrix theory is proposed to separate the single and multiple scattering contributions. The experimental set up uses an array of sources/receivers placed in front of the medium. The impulse responses between every couple of transducers are measured and form a matrix. Single-scattering contributions are shown to exhibit a deterministic coherence along the antidiagonals of the array response matrix, whatever the distribution of inhomogeneities. This property is taken advantage of to discriminate single from multiple-scattered waves. This allows one to evaluate the absorption losses and the scattering losses separately, by comparing the multiple scattering intensity with a radiative transfer model. Moreover, the relative contribution of multiple scattering in the backscattered wave can be estimated, which serves as a validity test for the Born approximation. Experimental results are presented with ultrasonic waves in the MHz range, on a synthetic sample (agar-gelatine gel) as well as on breast tissues. Interestingly, the multiple scattering contribution is found to be far from negligible in the breast around 4.3 MHz.Comment: 35 pages, 11 figures, final version, contains the appendix of the original articl

    Organizational stressors associated with job stress and burnout in correctional officers: a systematic review.

    Get PDF
    BackgroundIn adult correctional facilities, correctional officers (COs) are responsible for the safety and security of the facility in addition to aiding in offender rehabilitation and preventing recidivism. COs experience higher rates of job stress and burnout that stem from organizational stressors, leading to negative outcomes for not only the CO but the organization as well. Effective interventions could aim at targeting organizational stressors in order to reduce these negative outcomes as well as COs' job stress and burnout. This paper fills a gap in the organizational stress literature among COs by systematically reviewing the relationship between organizational stressors and CO stress and burnout in adult correctional facilities. In doing so, the present review identifies areas that organizational interventions can target in order to reduce CO job stress and burnout.MethodsA systematic search of the literature was conducted using Medline, PsycINFO, Criminal Justice Abstracts, and Sociological Abstracts. All retrieved articles were independently screened based on criteria developed a priori. All included articles underwent quality assessment. Organizational stressors were categorized according to Cooper and Marshall's (1976) model of job stress.ResultsThe systematic review yielded 8 studies that met all inclusion and quality assessment criteria. The five categories of organizational stressors among correctional officers are: stressors intrinsic to the job, role in the organization, rewards at work, supervisory relationships at work and the organizational structure and climate. The organizational structure and climate was demonstrated to have the most consistent relationship with CO job stress and burnout.ConclusionsThe results of this review indicate that the organizational structure and climate of correctional institutions has the most consistent relationship with COs' job stress and burnout. Limitations of the studies reviewed include the cross-sectional design and the use of varying measures for organizational stressors. The results of this review indicate that interventions should aim to improve the organizational structure and climate of the correctional facility by improving communication between management and COs

    ABC transporters and azole susceptibility in laboratory strains of the wheat pathogen Mycosphearella graminicola

    Get PDF
    Laboratory strains of Mycosphaerella graminicola with decreased susceptibilities to the azole antifungal agent cyproconazole showed a multidrug resistance phenotype by exhibiting cross-resistance to an unrelated chemical, cycloheximide or rhodamine 6G, or both. Decreased azole susceptibility was found to be associated with either decreased or increased levels of accumulation of cyproconazole. No specific relationship could be observed between azole susceptibility and the expression of ATP-binding cassette (ABC) transporter genes MgAtr1 to MgAtr5 and the sterol P450 14-demethylase gene, CYP51. ABC transporter MgAtr1 was identified as a determinant in azole susceptibility since heterologous expression of the protein reduced the azole susceptibility of Saccharomyces cerevisiae and disruption of MgAtr1 in one specific M. graminicola laboratory strain with constitutive MgAtr1 overexpression restored the level of susceptibility to cyproconazole to wild-type levels. However, the level of accumulation in the mutant with an MgAtr1 disruption did not revert to the wild-type level. We propose that variations in azole susceptibility in laboratory strains of M. graminicola are mediated by multiple mechanisms

    Prediction of hERG inhibition of drug discovery compounds using biomimetic HPLC measurements

    Get PDF
    The major causes of failure of drug discovery compounds in clinics are the lack of efficacy and toxicity. To reduce late-stage failures in the drug discovery process, it is essential to estimate early the probability of adverse effects and potential toxicity. Cardiotoxicity is one of the most often observed problems related to a compound\u27s inhibition of the hERG channel responsible for the potassium cation flux. Biomimetic HPLC methods can be used for the early screening of a compound\u27s lipophilicity, protein binding and phospholipid partition. Based on the published hERG pIC50 data of 90 marketed drugs and their measured biomimetic properties, a model has been developed to predict the hERG inhibition using the measured binding of compounds to alpha-1-acid-glycoprotein (AGP) and immobilised artificial membrane (IAM). A representative test set of 16 compounds was carefully selected. The training set, involving the remaining compounds, served to establish the linear model. The mechanistic model supports the hypothesis that compounds have to traverse the cell membrane and bind to the hERG ion channel to cause the inhibition. The AGP and the hERG ion channel show structural similarity, as both bind positively charged compounds with strong shape selectivity. In contrast, a good IAM partition is a prerequisite for cell membrane traversal. For reasons of comparison, a corresponding model was derived by replacing the measured biomimetic properties with calculated physicochemical properties. The model established with the measured biomimetic binding properties proved to be superior and can explain over 70% of the variance of the hERG pIC50 values
    corecore