5,855 research outputs found

    Inclusion of non-spherical components of the Pauli blocking operator in (p,p') reactions

    Full text link
    We present the first calculations of proton elastic and inelastic scattering in which the Pauli blocking operator contains the leading non-spherical components as well as the usual spherical (angle-averaged) part. We develop a formalism for including the contributions to the effective nucleon-nucleon interaction from the resulting new G-matrix elements that extend the usual two-nucleon spin structure and may not conserve angular momentum. We explore the consequences of parity conservation, time reversal invariance, and nucleon-nucleon antisymmetrization for the new effective interaction. Changes to the calculated cross section and spin observables are small in the energy range from 100 to 200 MeV.Comment: 24 pages, 4 figures, to be published in Physical Review

    Gas of self-avoiding loops on the brickwork lattice

    Full text link
    An exact calculation of the phase diagram for a loop gas model on the brickwork lattice is presented. The model includes a bending energy. In the dense limit, where all the lattice sites are occupied, a phase transition occuring at an asymmetric Lifshitz tricritical point is observed as the temperature associated with the bending energy is varied. Various critical exponents are calculated. At lower densities, two lines of transitions (in the Ising universality class) are observed, terminated by a tricritical point, where there is a change in the modulation of the correlation function. To each tricritical point an associated disorder line is found.Comment: 19 pages, 6 figures. to appear in J. Phys. A : Math. & Ge

    Effect of antiferromagnetic exchange interactions on the Glauber dynamics of one-dimensional Ising models

    Full text link
    We study the effect of antiferromagnetic interactions on the single spin-flip Glauber dynamics of two different one-dimensional (1D) Ising models with spin ±1\pm 1. The first model is an Ising chain with antiferromagnetic exchange interaction limited to nearest neighbors and subject to an oscillating magnetic field. The system of master equations describing the time evolution of sublattice magnetizations can easily be solved within a linear field approximation and a long time limit. Resonant behavior of the magnetization as a function of temperature (stochastic resonance) is found, at low frequency, only when spins on opposite sublattices are uncompensated owing to different gyromagnetic factors (i.e., in the presence of a ferrimagnetic short range order). The second model is the axial next-nearest neighbor Ising (ANNNI) chain, where an antiferromagnetic exchange between next-nearest neighbors (nnn) is assumed to compete with a nearest-neighbor (nn) exchange interaction of either sign. The long time response of the model to a weak, oscillating magnetic field is investigated in the framework of a decoupling approximation for three-spin correlation functions, which is required to close the system of master equations. The calculation, within such an approximate theoretical scheme, of the dynamic critical exponent z, defined as 1/τ(1/ξ)z{1/\tau} \approx ({1/ {\xi}})^z (where \tau is the longest relaxation time and \xi is the correlation length of the chain), suggests that the T=0 single spin-flip Glauber dynamics of the ANNNI chain is in a different universality class than that of the unfrustrated Ising chain.Comment: 5 figures. Phys. Rev. B (accepted July 12, 2007

    The Drell-Yan process and Deep Inelastic Scattering from the lattice

    Get PDF
    We report on measurements of the h_1 structure function, relevant to calculating cross-sections for the Drell-Yan process. This is a quantity which can not be measured in Deep Inelastic Scattering, it gives additional information on the spin carried by the valence quarks, as well as insights on how relativistic the quarks are.Comment: 3 pages, Latex, 3 figures, espcrc2.sty included, Talk presented at LATTICE96(phenomenology

    Effect of maternal cold exposure and nutrient restriction on insulin-like growth factor sensitivity in adipose tissue of newborn sheep

    Get PDF
    Adipose tissue mass in the newborn is determined in part by insulin-like growth factor (IGF)s, which are dependent on the maternal nutritional and metabolic environment during late gestation. The present study was designed to determine whether maternal cold exposure (CE) commencing in mid gestation could modulate some of the adaptive effects of nutrient restriction in late gestation on adipose tissue endocrine sensitivity in the resulting offspring. Twenty eight pregnant sheep were entered into the study and were either shorn, i.e. cold exposed, from 70 days gestation (term = 147 days), or remained unshorn, and were fed either their total calculated metabolisable energy (ME) requirements for body weight and pregnancy from 110 days gestation or 50% of this amount (n=7 per group). Adipose tissue was sampled from the offspring at one day of age and the mRNA abundance for IGF-I, II their receptors (R) and GH secretagogue receptor-1a (GHSR-1a) were determined. CE mothers produced larger offspring with more perirenal adipose tissue, an adaptation prevented by maternal nutrient restriction. Nutrient restriction in unshorn mothers increased IGF-I and IIR mRNA abundance. The mRNA abundances for IGF-I, II and IIR in adipose tissue were reduced by CE, adaptations independent of maternal food intake, whereas CE plus nutrient restriction increased GHSR-1a mRNA. In conclusion, maternal nutrient restriction with or without CE has very different effects on IGF sensitivity of adipose tissue and may act to ensure adequate fat stores are present in the newborn in the face of very different maternal endocrine and metabolic environments

    Chaos in computer performance

    Get PDF
    Modern computer microprocessors are composed of hundreds of millions of transistors that interact through intricate protocols. Their performance during program execution may be highly variable and present aperiodic oscillations. In this paper, we apply current nonlinear time series analysis techniques to the performances of modern microprocessors during the execution of prototypical programs. Our results present pieces of evidence strongly supporting that the high variability of the performance dynamics during the execution of several programs display low-dimensional deterministic chaos, with sensitivity to initial conditions comparable to textbook models. Taken together, these results show that the instantaneous performances of modern microprocessors constitute a complex (or at least complicated) system and would benefit from analysis with modern tools of nonlinear and complexity science

    Perturbative renormalization of bilinear quark and gluon operators

    Get PDF
    The renormalisation constants for local bilinear quark operators are calculated using the Sheikholeslami-Wohlert improved action. In addition we compute the renormalisation constant of the leading gluon operator for different group representations and discuss the mixing of the operators E^2 and B^2.Comment: 3 pages, poster contributed at Lattice96, St. Loui

    Frustrated quantum Heisenberg ferrimagnetic chains

    Full text link
    We study the ground-state properties of weakly frustrated Heisenberg ferrimagnetic chains with nearest and next-nearest neighbor antiferromagnetic exchange interactions and two types of alternating sublattice spins S_1 > S_2, using 1/S spin-wave expansions, density-matrix renormalization group, and exact- diagonalization techniques. It is argued that the zero-point spin fluctuations completely destroy the classical commensurate- incommensurate continuous transition. Instead, the long-range ferrimagnetic state disappears through a discontinuous transition to a singlet state at a larger value of the frustration parameter. In the ferrimagnetic phase we find a disorder point marking the onset of incommensurate real-space short-range spin-spin correlations.Comment: 16 pages (LaTex 2.09), 6 eps figure
    corecore