113 research outputs found

    Innate immune recognition of glycosylated surface determinants of Campylobacter jejuni

    Get PDF
    Campylobacter jejuni, a commensal in poultry members, causes acute gastroenteritis in humans. Understanding of Campylobacter jejuni pathogenesis lags far behind that of other gastrointestinal pathogens despite Campylobacter sp. being a leading cause of bacterial gastroenteritis in the developed world. In this study C. jejuni was shown to induce high levels of IL-10 from dendritic cells, a potent anti-inflammatory cytokine. IL-10 secretion was induced by the flagella of C. jejuni, a protein based filament structure that is modified by sialic-acid like structures. These sugar structures were shown to be critical in the induction of IL-10. C. jejuni lacking flagella induced lower levels of p38 activation, and inhibition of p38 reduced IL-10 secretion. Interestingly Myd88-dependant TLR signalling was shown to be critical for the induction of IL-10 despite the inability of C. jejuni flagellin to activate TLR5. We showed that C. jejuni can bind to Siglec-10, an interaction that was dependent on the glycosylation of the flagella. We speculate that the addition of glycan structures to C. jejuni flagellin proteins may be a host-subversion strategy via the induction of IL-10. C. jejuni strains isolated from infected humans can be sub-divided into two distinct phylogenetic clades. We sought to investigate whether the lipooligosaccharide (LOS) structure is distinct between the two clades. The structures of the LOS from 15 different strains were analysed. Variation in the oligosaccharide (OS) structure, amide linkages connecting the acyl chains to the lipid A backbone, and phosphorylation of the lipid A between the strains were observed. Phosphorylation of the lipid A and sialylation of the OS correlated with the induction of TNF-α from monocytes. Interestingly, the sialylation of the OS correlated with the phylogenetic clade. Collectively the data presented highlights the importance of glycosylated surface determinants on pathogenic bacteria to manipulate the host innate immune response

    Hemocytes are essential for Drosophila melanogaster post-embryonic development, independent of control of the microbiota.

    Get PDF
    Proven roles for hemocytes (blood cells) have expanded beyond the control of infections in Drosophila. Despite this, the crucial role of hemocytes in post-embryonic development has long thought to be limited to control of microorganisms during metamorphosis. This has previously been shown by rescue of adult development in hemocyte-ablation models under germ-free conditions. Here, we show that hemocytes have an essential role in post-embryonic development beyond their ability to control the microbiota. Using a newly generated strong hemocyte-specific driver line for the GAL4/UAS system, we show that specific ablation of hemocytes is early pupal lethal, even under axenic conditions. Genetic rescue experiments prove that this is a hemocyte-specific phenomenon. RNA-seq data suggests that dysregulation of the midgut is a prominent consequence of hemocyte ablation in larval stages, resulting in reduced gut lengths. Dissection suggests that multiple processes may be affected during metamorphosis. We believe this previously unreported role for hemocytes during metamorphosis is a major finding for the field

    Delineation of the Innate and Adaptive T-Cell Immune Outcome in the Human Host in Response to Campylobacter jejuni Infection

    Get PDF
    Background: Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Despite the significant health burden this infection presents, molecular understanding of C. jejuni-mediated disease pathogenesis remains poorly defined. Here, we report the characterisation of the early, innate immune response to C. jejuni using an ex-vivo human gut model of infection. Secondly, impact of bacterial-driven dendritic cell activation on T-cell mediated immunity was also sought.Methodology: Healthy, control paediatric terminal ileum or colonic biopsy tissue was infected with C. jejuni for 8-12 hours. Bacterial colonisation was followed by confocal microscopy and mucosal innate immune responses measured by ELISA. Marked induction of IFN gamma with modest increase in IL-22 and IL-17A was noted. Increased mucosal IL-12, IL-23, IL-1 beta and IL-6 were indicative of a cytokine milieu that may modulate subsequent T-cell mediated immunity. C. jejuni-driven human monocyte-derived dendritic cell activation was followed by analyses of T cell immune responses utilising flow cytometry and ELISA. Significant increase in Th-17, Th-1 and Th-17/Th-1 double-positive cells and corresponding cytokines was observed. The ability of IFN gamma, IL-22 and IL-17 cytokines to exert host defence via modulation of C. jejuni adhesion and invasion to intestinal epithelia was measured by standard gentamicin protection assay.Conclusions: Both innate and adaptive T cell-immunity to C. jejuni infection led to the release of IFN gamma, IL-22 and IL-17A; suggesting a critical role for this cytokine triad in establishing host anti-microbial immunity during the acute and effectors phase of infection. In addition, to their known anti-microbial functions; IL-17A and IL-17F reduced the number of intracellular C. jejuni in intestinal epithelia, highlighting a novel aspect of how IL-17 family members may contribute to protective immunity against C. jejuni

    A closed-loop EKF and multi-failure diagnosis approach for cooperative GNSS positioning

    Get PDF
    Current cooperative positioning with Global Navigation Satellite System (GNSS) for connected vehicle application mainly uses pseudorange measurements. However the positioning accuracy offered cannot meet the requirements for lane-level positioning, collision avoidance and future automatic driving, which needs real-time positioning accuracy of better than 0.5m. Furthermore, there is an apparent lack of research into the integrity issue for these new applications under emerging driverless vehicle applications. In order to overcome those problems, a new Extended Kalman Filter (EKF) and a multi-failure diagnosis algorithm are developed to process both GNSS pseudorange and carrier phase measurements. We first introduce a new closed-loop EKF with partial ambiguity resolution (PAR) as feedback to address the low accuracy issue. Then a multi-failure diagnosis algorithm is proposed to improve integrity and reliability. The core of this new algorithm includes using Carrier phase based Receiver Autonomous Integrity Monitoring (CRAIM) method for failure detection, and the double extended w-test detectors to identify failure. A cooperative positioning experiment was carried out to validate the proposed method. The results show that the proposed closed-loop EKF can provide highly accurate positioning, and the multi-failure diagnosis method is effective in detecting and identifying failures for both code and carrier phase measurements

    Discovery of SQSTM1/p62-dependent P-bodies that regulate the NLRP3 inflammasome

    Get PDF
    Autophagy and ribonucleoprotein granules, such as P-bodies (PBs) and stress granules, represent vital stress responses to maintain cellular homeostasis. SQSTM1/p62 phase-separated droplets are known to play critical roles in selective autophagy; however, it is unknown whether p62 can exist as another form in addition to its autophagic droplets. Here, we found that, under stress conditions, including proteotoxicity, endotoxicity, and oxidation, autophagic p62 droplets are transformed to a type of enlarged PBs, termed p62-dependent P-bodies (pd-PBs). p62 phase separation is essential for the nucleation of pd-PBs. Mechanistically, pd-PBs are triggered by enhanced p62 droplet formation upon stress stimulation through the interactions between p62 and DDX6, a DEAD-box ATPase. Functionally, pd-PBs recruit the NLRP3 inflammasome adaptor ASC to assemble the NLRP3 inflammasome and induce inflammation-associated cytotoxicity. Our study shows that p62 droplet-to-PB transformation acts as a stress response to activate the NLRP3 inflammasome process, suggesting that persistent pd-PBs lead to NLRP3-dependent inflammation toxicity

    Variance in Centrality within Rock Hyrax Social Networks Predicts Adult Longevity

    Get PDF
    BACKGROUND: In communal mammals the levels of social interaction among group members vary considerably. In recent years, biologists have realized that within-group interactions may affect survival of the group members. Several recent studies have demonstrated that the social integration of adult females is positively associated with infant survival, and female longevity is affected by the strength and stability of the individual social bonds. Our aim was to determine the social factors that influence adult longevity in social mammals. METHODOLOGY/PRINCIPAL FINDINGS: As a model system, we studied the social rock hyrax (Procavia capensis), a plural breeder with low reproductive skew, whose groups are mainly composed of females. We applied network theory using 11 years of behavioral data to quantify the centrality of individuals within groups, and found adult longevity to be inversely correlated to the variance in centrality. In other words, animals in groups with more equal associations lived longer. Individual centrality was not correlated with longevity, implying that social tension may affect all group members and not only the weakest or less connected ones. CONCLUSIONS/SIGNIFICANCE: Our novel findings support previous studies emphasizing the adaptive value of social associations and the consequences of inequality among adults within social groups. However, contrary to previous studies, we suggest that it is not the number or strength of associations that an adult individual has (i.e. centrality) that is important, but the overall configuration of social relationships within the group (i.e. centrality SD) that is a key factor in influencing longevity

    Environmental and lifestyle risk factors of breast cancer in Malta-a retrospective case-control study

    Get PDF
    The funding for this research was obtained as part of IMaGenX – and ItaliaMalta co-financed EU project Operational Programme 2007–2013.AIM AND BACKGROUND: Environmental exposures are known to play a role in the development of cancer, including breast cancer. There are known associations of breast cancer with environmental factors such as sunlight exposure, diet and exercise and alcohol consumption as well as physiological factors. This study examines the prevalence of risk factors for breast cancer related to dietary intake, environment and lifestyle in the female population of Malta. Malta has had little research in this area, and therefore an exploratory study was carried out. METHODS: A retrospective case-control design was applied. Two hundred cases and 403 controls were included. Both cases and controls were subjects without a known family history for breast cancer. Controls were age-matched to cases in an age-decade category roughly at a 2:1 ratio. Interviews were carried out face-to-face using a questionnaire designed by Maltese and Sicilian researchers, encompassing various factors including diet, lifestyle, physiological factors and medical history. Breast cancer risk was then analysed using both univariate and multivariate analyses. For factors having a metric scale, the Mann-Whitney test was used to compare mean scores, while for categorical factors, the chi-square test was used to compare percentages between the case and control groups. Statistical modelling was carried out using binary logistic regression to relate the likelihood of breast cancer to over 50 risk/protective factors analysed collectively. RESULTS: Univariate analysis showed around 20 parameters of interest, 14 of which were statistically significant at a 0.05 level of significance. Logistic regression analysis identified 11 predictors of interest that were statistically significant. Tomato, coffee and canned meat consumption were associated with lower likelihood of breast cancer (OR = 0.988, 0.901, 0.892, respectively), whereas beans and cabbage consumption and low sodium salt were positively associated with breast cancer (OR = 1.045, 1.834, 1.028, respectively). Premenopausal status was associated with a lower risk of breast cancer compared to postmenopausal status (OR = 0.067). Not having experienced myocardial infarction was associated with lower odds of breast cancer (OR = 0.331). Increased height was also found to have a strong association with risk of breast cancer, with the odds of having breast cancer increasing for every centimetre increase in height (OR = 1.048). In terms of quantity, odds of having breast cancer were lower in those exposed to sunlight (OR = 0.891). The odds of having breast cancer were also lower in those not using the oral contraceptive pill (OR = 0.454). CONCLUSIONS: Various factors in this exploratory study were found to be associated with development of breast cancer. While causal conclusions cannot be made, tomato consumption is of particular interest, as these results corroborate findings found in other studies. A negative association of breast cancer with sunlight exposure and oral contraceptive pill use corroborates findings in other studies. Other associations with dietary intake can be explained by dietary changes. More robust studies in this area, including possible longitudinal studies, are warranted.peer-reviewe
    • …
    corecore