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Abstract 

Campylobacter jejuni, a commensal in poultry members, causes acute gastroenteritis in 

humans. Understanding of Campylobacter jejuni pathogenesis lags far behind that of other 

gastrointestinal pathogens despite Campylobacter sp. being a leading cause of bacterial 

gastroenteritis in the developed world.  

In this study C. jejuni was shown to induce high levels of IL-10 from dendritic cells, a potent 

anti-inflammatory cytokine. IL-10 secretion was induced by the flagella of C. jejuni, a 

protein based filament structure that is modified by sialic-acid like structures. These sugar 

structures were shown to be critical in the induction of IL-10. C. jejuni lacking flagella 

induced lower levels of p38 activation, and inhibition of p38 reduced IL-10 secretion. 

Interestingly Myd88-dependant TLR signalling was shown to be critical for the induction of 

IL-10 despite the inability of C. jejuni flagellin to activate TLR5. We showed that C. jejuni can 

bind to Siglec-10, an interaction that was dependent on the glycosylation of the flagella. 

We speculate that the addition of glycan structures to C. jejuni flagellin proteins may be a 

host-subversion strategy via the induction of IL-10.  

C. jejuni strains isolated from infected humans can be sub-divided into two distinct 

phylogenetic clades. We sought to investigate whether the lipooligosaccharide (LOS) 

structure is distinct between the two clades. The structures of the LOS from 15 different 

strains were analysed. Variation in the oligosaccharide (OS) structure, amide linkages 

connecting the acyl chains to the lipid A backbone, and phosphorylation of the lipid A 

between the strains were observed. Phosphorylation of the lipid A and sialylation of the OS 

correlated with the induction of TNF-α from monocytes. Interestingly, the sialylation of the 

OS correlated with the phylogenetic clade.   

Collectively the data presented highlights the importance of glycosylated surface 

determinants on pathogenic bacteria to manipulate the host innate immune response.  
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1.1  Campylobacter jejuni 

Campylobacteriosis is the most frequent cause of food-borne gastroenteritis in the 

European Union with over 190,000 cases reported annually, although the actual number of  

cases are estimated at 9 million (European Food Safety Authority; EFSA). Campylobacter sp. 

are a major cause of bacterial-associated gastroenteritis in the UK with rates as high as 9.3 

cases per 1000 person-years for community acquired infections (Tam et al. 2012).  The 

economic cost of infection in the EU is estimated to be 2.4 billion Euros therefore not 

surprisingly considerable efforts are being made to limit infection. Campylobacter jejuni is 

the cause of ~90% cases of human Campylobacter enteritis. In the majority of cases, 

disease is self-limiting with acute gastroenteritis lasting less than 1 week; however in a 

small minority of cases post-infection immune pathologies develop. Despite the heavy 

disease and economic burden presented by C. jejuni, far less is known about its 

pathogenesis when compared to other enteropathogens such as Salmonella typhimurium, 

Shigella sp., and Escherichia coli.    

1.1.1 Taxonomy 

C. jejuni belongs to the genus Campylobacter, order Campylobacterales, which are 

members of the epsilon class of proteobacteria. The Campylobacter genus was first 

identified as separate from Vibrio in 1963 after Sebald and Véron noted the distinct 

biochemical properties of Vibrio fetus and Vibrio bubulus from other Vibrio species (Sebald 

and Veron. 1963). In 1973, further analyses of microaerobic/anaerobic bacteria in the 

Vibrio taxa resulted in the re-classification of these bacteria into the Campylobacter taxon 

(Veron and Chatelain R 1973). Pre-1973 Campylobacter sp. were primarily seen as 

veterinary pathogens, and a 1957 report on related Vibrio in human diarrhoeal disease was 

believed to be an anomaly (King 1957). Throughout the 1970’s the importance of 

Campylobacter sp. in human gastroenteritis became apparent as new techniques allowed 

the culturing of these micro-aerophillic bacteria from patients presenting with diarrhoea 

(Skirrow 1977). There are currently 25 known species of Campylobacter which have been 

isolated from a diverse array of hosts, both colonised without apparent symptoms and 

from those presenting with enteritis.  

Campylobacter jejuni was first described in 1931 by Jones and colleagues in cattle suffering 

from spontaneous diarrhoea (termed Vibrio jejuni) (Jones et al. 1931). There are two 

subspecies of Campylobacter jejuni: C. jejuni subsp. jejuni (referred to as C. jejuni) which is 

the major cause of human Campylobacter enteritis (campylobacteriosis), and C. jejuni 
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subsp. doylei. The two sub species differ considerably in their distribution and ecology. As 

yet no known animal host has been identified for subsp. doylei (Parker et al. 2007). C. jejuni 

subsp. doylei has been isolated from patients suffering from both gastritis and enteritis, 

and is more frequently associated with bacteraemia than subsp. jejuni. Interestingly, the 

genes encoding the cytolethal distending toxin (CDT) are absent in subsp. doylei and it is 

hypothesised that a suboptimal host pro-inflammatory response increases chances of 

systemic infection. Overall, subsp. doylei is the cause of very few cases of gastroenteritis in 

comparison to subsp. jejuni.   

The second most common cause of campylobacteriosis is C. coli, which is genetically the 

closest relative of C. jejuni.  C. coli accounts for <20% of human disease and often colonises 

pigs (Gurtler et al. 2005). Over the past decade the importance of other Campylobacter sp. 

in human disease has increasingly been appreciated (Man 2011). C. concisus was first 

isolated from a patient suffering from periodontal disease in the 1980’s, its role in disease 

however remains unclear as it has subsequently been isolated from healthy patients 

(Macuch and Tanner 2000). C. concisus and C. upsaliensis have been isolated from patients 

suffering from campylobacteriosis in Belgium, South Africa, Denmark, and Sweden. It has 

been hypothesised that the fastidious growth conditions of these Campylobacter sp. has 

resulted in an under representation of these organisms in clinical diagnosis (Man 2011).   

Helicobacter, Wolinella, Arcobacter, Sulfurospirillium and Campylobacter belong to the 

order Campylobacterales. Helicobacter pylori was originally termed Campylobacter pylori, 

however in 1989 Helicobacter was assigned to a new genus as increasing structural and 

biochemical differences between the two genus’s were identified; such as the sheath that 

encases the flagellum of Helicobacter sp. but is absent in the Campylobacter sp. (Goodwin 

et al. 1989). H. pylori colonises the human stomach and is the leading cause of gastritis and 

related complications. Wolinella succinogenes is a non-pathogenic commensal of cattle 

rumen; interestingly it retains many of the virulence factors associated with H. pylori and C. 

jejuni (Baar et al. 2003). Intricate crosstalk between host and bacterial factors most likely 

determines the potential outcome of host-microbe interactions which may include 

commensalism, long-term existence with potential pathology or acute infection with or 

without additional chronic clinical manifestations.  
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1.1.2 Clinical Manifestations 

1.1.2.1 Gastroenteritis 

Acute gastroenteritis is the major clinical manifestation in humans infected with C. jejuni; 

clinical symptoms include watery or bloody diarrhoea, often accompanied by abdominal 

cramps and fever (Blaser 1997). Symptoms often resolve within 1 week, although they may 

persist longer than this. Incubation times of between 24-72h generally occur but incubation 

periods of >1 week have been reported, the latter may be associated with low inoculum of 

infection.  In the majority of cases in the developed world campylobacteriosis induces 

inflammatory diarrhoea, with polymorphonuclear (PMN) cells and erythrocytes present in 

the stools (Blaser et al. 1982).  Symptoms are generally self-limiting, although 

immunocompromised patients, such as HIV sufferers, are more likely to have extended 

gastroenteritis and develop bacteraemia (Manfredi et al. 2002).   

Clinical manifestations in developing versus developed countries   

Clinical manifestations of C. jejuni infection differ in people from developing countries than 

those from developed countries, a fact which may aid in improving our understanding of its 

pathogenesis. Principally, people in developing countries are exposed to multiple C. jejuni 

strains far more frequently throughout their lifetimes which correlates with a decrease in 

the symptoms associated with infection (Blaser 1997). Gastroenteritis is more commonly 

seen in young children, and it is rare for adults to suffer from symptomatic disease (Blaser 

1997). Additionally, people from developing countries may asymptomatically shed C. jejuni, 

a phenomena often associated with a prior enteritis episode (Blaser et al. 1980; Pazzaglia et 

al. 1991). Symptomatic disease is often watery rather than bloody diarrhoea. This suggests 

repeated exposure to different C. jejuni strains in early childhood allows the development 

of protective immunity which limits symptomatic disease in older individuals (Havelaar et 

al. 2009). Interestingly, travellers from developed countries with no pre-existing C. jejuni 

immunity develop the more serious symptoms of bloody diarrhoea/abdominal cramps 

when infected with C. jejuni in developing countries (Walz et al. 2001). Additionally, the 

same isolates associated with watery diarrhoea in children in developing countries have 

been isolated from travellers presenting with bloody diarrhoea (Ketley and Konkel 2005). 

This suggests strain variation is not the major cause for the differences observed between 

developed and developing countries. In addition, no differences have been found between 

strains isolated from symptomatic and asymptomatic infection (Champion et al. 2005; 

Sjogren et al. 1989). In a human volunteer study however C. jejuni strains showed 

differential ability to induce pathology (Black et al. 1988). Taken together, strain variation 
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may account for some but not all of the differences in clinical manifestations observed 

around the world.  

The protective immunity acquired by repeated exposure to different C. jejuni strains 

protects only from symptomatic disease but not colonisation in developing countries 

(Havelaar et al 2009; Sjogren, Ruiz-Palacios, & Kaijser 1989; Taylor et al. 1988). C. jejuni has 

also been isolated from asymptomatic long-term abattoir workers (Cawthraw et al. 2000). 

Calculations based on multiple longitudinal cohort studies predicts that even in developed 

countries only 1:120 people who shed Campylobacter species actually present with clinical 

manifestations (Havelaar et al. 2009). Host immunity is therefore predicted to be critical in 

the outcome of exposure to C. jejuni in humans.   

Invasive disease 

Invasive disease and bacteraemia is very uncommon in C. jejuni infected individuals. HIV-

patients and the elderly are more likely to suffer from bacteraemia which suggests host 

immunity plays a major role in limiting systemic spread (Fernandez-Cruz et al. 2010). 

The spectrum of clinical manifestations associated with human C. jejuni infection allows a 

basic model of infection to be predicted which is largely dependent on the host immune 

status. In an immune naïve individual a sufficient C. jejuni inoculum with a virulent strain 

causes acute inflammation and diarrhoea; this acute inflammation accounts for the bloody 

diarrhoea however it also prevents systemic spread. An individual who has acquired 

immunity to multiple C. jejuni strains can mount a robust adaptive immune response and 

limiting pathology but not colonisation.  

1.1.2.2 Intestinal and Extra intestinal sequelae of C. jejuni infection 

Inflammatory Bowel Disease 

Crohn’s Disease (CD) and Ulcerative Colitis (UC) are collectively termed Inflammatory Bowel 

Disease (IBD); they represent major chronic inflammatory disorders of the gastrointestinal 

(GI) tract. Increased risk of developing IBD has been associated with both Campylobacter 

and Salmonella infection (Gradel et al. 2009). However, this association remains 

controversial as a more recent study has shown increased sampling bias around the onset 

of IBD is responsible for the increased detection rates of Campylobacter and Salmonella in 

newly diagnosed IBD patients (Jess et al. 2011).   
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Guillain-Barré Syndrome  

Guillain-Barré Syndrome (GBS) is an autoimmune neuropathy resulting from the production 

of auto-antibodies that cause de-myelination of nerve gangliosides in the peripheral 

nervous system. Symptoms often begin in the lower extremities, and can ascend through 

the body resulting in full paralysis requiring ventilator-assisted breathing. The majority of 

GBS cases are preceded by gastroenteritis, and the discovery of molecular mimicry 

between C. jejuni lipooligosaccharide (LOS) and nerve gangliosides identified C. jejuni 

infection as a major aetiological agent of GBS (Aspinall et al. 1994; Mishu and Blaser 1993).  

Host factors are also important as GBS-associated C. jejuni strains have been isolated from 

patients suffering from uncomplicated enteritis (Nachamkin et al. 1999).   

Miller Fisher Syndrome 

Miller Fisher Syndrome (MFS) is a rare variant of GBS which primarily affects the nerves 

involved in eye movement. C. jejuni infection has also been linked to the development of 

MFS (Yuki 1997). 

Reactive Arthritis 

Reactive Arthritis (RA) is a post-infectious inflammatory arthritic disease associated with 

the HLA-B27 allele. Along with other enteropathogens such as Salmonella, C. jejuni is 

associated with the onset of this disease (Doorduyn et al. 2008). 

1.1.3 Disease and colonisation in other species 

C. jejuni can cause enteritis in many animal species. C. jejuni has been isolated from dogs, 

cats, pigs, and ferrets suffering from diarrhoea (Babakhani et al. 1993; Davies et al. 1984; 

Fox et al. 1986). C. jejuni can reside in pigs as a commensal or cause diarrhoeal disease 

(Ketley & Konkel 2005). Outbred pigs with no prior exposure to C. jejuni develop disease 

after inoculation (Mansfield et al. 2003).  Immunocompetent pigs with no alterations to 

enteric bacteria do not suffer enteritis on exposure to C. jejuni, in contrast colostrum-

deprived new born piglets can suffer similar symptoms to human pathology (Babakhani 

1993). These findings suggest that adaptive immunity is important in the clinical 

manifestations of C. jejuni infection in pigs, as noted for humans. C. jejuni is not considered 

to be a major cause of enteritis in cattle and sheep even though it is implicated with 

increased incidence of abortion (Manser and Dalziel 1985).   

Zoonotic transmission is the major route of C. jejuni infection in humans, in particular 

transmission from contaminated poultry is estimated to cause between 20-70% of all 

human infection (Allos 2001). For this reason understanding C. jejuni/chicken GI 
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interactions has received increased attention in recent years. Approximately 75% of all 

commercially reared chickens are infected with C. jejuni (EFSA). C. jejuni is generally 

considered a commensal in poultry although C. jejuni-mediated diarrhoeal disease has 

been reported in inoculated 3 day-old chicks (Ruiz-Palacios et al. 1981). C. jejuni spreads 

rapidly in broiler chickens, which can be colonised at very high numbers of between 106-108 

colony forming units (CFU)/gram in the cecum (Meade et al. 2009). Surprisingly for a 

commensal bacterium, C. jejuni has been isolated from multiple organs in the broilers, 

including the spleen and liver, which indicates systemic spread is possible from the cecum 

(Meade et al. 2009). This also raises questions about its commensal status in chickens. 

Evidence suggests that C. jejuni translocates through the epithelial barrier to enable 

systemic spread by a process that does not elicit an inflammatory response (Van et al. 

2008). The lack of an inflammatory response in chickens is considered to be a result of an 

“immune-dampening” strategy by C. jejuni (Hermans et al. 2011). C. jejuni reduces anti-

microbial peptide (AMP) expression in the chicken gut highlighting one of many potential 

immune evasion mechanisms it employs (Meade et al. 2009).    

In addition to contaminated poultry, other, non-livestock sources, such as contaminated 

milk and water are significant reservoirs of C. jejuni. A study comparing the phylogenetic 

relationship of “livestock” and “non-livestock or environmental” sources found that over 

50% of human clinical strains tested clustered with the “environmental” strains (Champion 

et al. 2005). It is probable that this source of infection may have been under-represented in 

other studies.  

1.1.4 C. jejuni Surface Structures 

The surface structures of C. jejuni, like many other mucosal pathogens are heavily 

glycosylated; ~8% of its genome encodes proteins implicated in surface carbohydrate 

structures (Figure 1-1) (Parkhill et al. 2000). C. jejuni encodes both N-linked and O-linked 

glycosylation pathways for the modification of periplasmic proteins and flagellin proteins 

respectively.  The first genome sequence highlighted the ability of C. jejuni to mediate 

phase-variation of many genes involved in the glycosylation pathways (Parkhill et al. 2000). 

Long stretches of repeated C or G bases called “homopolymeric tracts” increase slip-strand 

mispairing which can result in genes being “switched on” or “switched off”. The importance 

of these glycosylation systems in the pathogenesis of bacterial-driven human disease is just 

beginning to be appreciated. 
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Figure 1-1: C. jejuni surface structure features 

(a) The flagellum is anchored into both the inner and outer membrane. Flagellin proteins, 

FlaA and FlaB, are O-linked glycosylated with sialic-acid like structures. (b) The capsule is a 

highly branched polysaccharide structure. (c) Lipooligosaccharide (LOS) is an essential 

feature of the outer membrane. (d) Periplasmic and outer-membrane embedded proteins 

are modified by the N-linked glycosylation system. Modified from (Young et al. 2007).   

1.1.4.1 Lipooligosaccharide 

Lipopolysaccharide/lipooligosaccharide (LPS/LOS) forms an integral part of the outer 

membrane of Gram-negative bacteria. C. jejuni expresses LOS which consist of a 

hydrophobic lipid A that anchors into the outermembrane and an extracellular 

carbohydrate oligosaccharide (OS) that lacks the repeating carbohydrate O-antigen of LPS 

molecules (Figure 1-2). The lipid A anchor is essential for membrane integrity and complete 

mutation of C. jejuni LOS is lethal (Phongsisay et al. 2007). The OS structure can vary in 

length and composition; this property is a key strategy employed by Gram-negatives’ that 

allows them to evade and modulate the immune system of the intended host. Interestingly, 

severe truncation of the OS to just one sugar moiety proximal to the 3-deoxy-α-D-manno-

oct-2-ulopyranosic acid (KDO) residue does not affect bacterial growth, although it does 

increase the sensitivity of C. jejuni to antibiotics (Figure 1-2b) (Kanipes et al. 2006).  

The sugar components of the disaccharide lipid A backbone can be 2,3-diamino-2,3-

dideoxy-D-glucose (GlcN3N) or a D-glucosamine (GlcN) moiety (Moran et al. 1991). The 
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lipid A backbone is hexacylated with either palmitic (14 carbon) or myristic (16 carbon) acid 

(Moran et al. 1991). GlcN3N contains two amide linked palmitic/myristic acid chains, in 

comparison GlcN contains one amide and one ester linked fatty acid chain (Figure 1-2a). 

The two additional palmitic acid chains are attached to the palmitic and myristic acid of the 

sugar proximal to the OS attachment, making the disaccharide unsymmetrical. The most 

common backbone composition is GlcN3N-GlcN, although both GlcN3N-GlcN3N and GlcN-

GlcN structures have been detected (Szymanski et al. 2003). Mutation of two genes, gnnA 

and gnnB, eliminates the production of the GlcN3N precursor, UDP-GlcNAc3N, resulting in 

the production of C. jejuni LOS bearing only GlcN-GlcN backbone (Van Mourik et al. 2010). 

GlcN3N sugars reduce both the ability of C. jejuni LOS to activate Toll-like receptor 4 (TLR4) 

and the sensitivity of live C. jejuni to cationic AMPs. The disaccharide backbone can be 

modified with the addition of both phosphate (P) and phosphoethanolamine (PEA) on 

either or both sugars (Moran et al. 1991; Szymanski et al. 2003). The gene responsible for 

the addition of PEA groups onto the lipid A, Cj0256, is also responsible for the modification 

of the flagellar rod protein, FlgG, with PEA (Cullen and Trent 2010). The phosphorylation 

pattern and disaccharide composition of C. jejuni varies between strains and can also differ 

between different growths of the same strain; how these properties alter virulence remains 

to be determined (Szymanski et al. 2003). 

The C. jejuni OS consists of a mainly conserved inner core OS proximal to the lipid A 

backbone, and an outer core OS which varies significantly between strains suggesting the 

two OS cores are under differential selective pressure. The OS structure of C. jejuni strain 

NCTC 11168 is shown in Figure 1-2b. The inner core OS contains two KDO residues, two 

heptose (Hep) residues, with two branched glucose (Glu) residues on each heptose, and 

one PEA/P residue on the heptose proximal to the KDO (St Michael et al. 2002). The outer 

core OS of 11168 and other C. jejuni strains are composed of galactose (Gal), glucose, N-

acetyl-D-galactosamine (GalNAc), and N-acetylneuraminic acid (Neu5Ac; sialic acid) 

residues. The number of each sugar varies between strains and some strains lack sialic acid 

and GalNAc residues completely. The LOS biosynthesis locus in the C. jejuni genome is 

hypervariable and is composed of between 10 – 20 genes (Parker et al. 2008). To date 19 

different LOS classes have been identified with varying levels of homology (Parker et al. 

2005; Parker et al. 2008). Figure 1-3 shows the original 6 LOS classes described in 2005 

(Parker et al. 2005). A further 11 loci described in 2008 evolved by the deletion/ insertion 

of single or whole cassettes of genes from either other LOS loci or capsular polysaccharide 

(CPS) loci (Parker et al. 2008). waaC (open reading frame (orf) 1) and waaF (orf13) encode 
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heptosyltransferases for the addition of the inner core Hep residues (Kanipes et al.  2006; 

Oldfield et al. 2002). lgtF (orf3) is predicted to be a potential glycosyltransferase; the two 

domain protein (e.g. class A) transfers a Glu residue to both Hep residues in the inner core, 

the one-domain protein (e.g. class D) transfers only a single Glu to the Hep proximal to the 

KDO residue (Kanipes et al. 2008). Orfs 4, 5, and 6 are predicted to function in the addition 

of Gal residues to the outer core (Karlyshev et al. 2001). Classes A, B, and C contain genes 

responsible for the sialylation of LOS. neuA1 (orf 10) encodes a CMP-Neu5Ac synthase; 

neuB1 (orf 8) encodes a Neu5Ac synthase; neuC1 (orf9) encodes a UDP-GlcNAc 2-

epimerase; and cstII (orf 7) encodes a sialyltransferase (Gilbert et al. 2000; Gilbert et al. 

2002; Linton et al. 2000). Sialic acid may also be modified by an O-linked acetyl group 

catalysed by sialic-acid O-acetyl transferase encoded by soat (orf 11; class A and B) 

(Houliston et al. 2006).  cgtA (orf 5) encodes a GalNAc-transferase critical for the addition 

of GalNAc to the outer core (Guerry et al. 2002). Sequencing of multiple LOS loci has 

revealed minor genetic alteration within strains of the same LOS class as an additional 

mechanism which C. jejuni employs to vary the outer core OS. Phase-variation, gene 

inactivation by single base insertion/deletion and missense mutations are all operational at 

the C. jejuni LOS loci (Parker et al. 2008). 

The high degree of variability in the outer core OS structure suggests that it may be under 

differential selective pressure compared to the inner core. Indeed many structural features 

of the outer core OS are critical in host-interactions (Jeon et al. 2009; Kanipes et al. 2006; 

Naito et al. 2010). An important consequence is the molecular mimicry observed between 

the OS outer core structure and host gangliosides and other glycans (Aspinall et al.  1994; 

Houliston et al. 2011). In addition to gangliosides, C. jejuni LOS can share structural features 

with P-blood group, paragloboside, lacto-N-biose and sialyl-lewis-c units (Houliston et al.  

2011). Presumably, mimicry of host glycans is a potential immune evasion strategy, as 

adaptive immune cells with specificities for these glycans will be deleted leading to 

increased peripheral tolerance.     
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(a) 
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Figure 1-2: Structure of C. jejuni Lipooligosaccharide (LOS) 

(a) Hexacylated C. jejuni lipid A. (b) Oligosaccharide structure from C. jejuni strain 1116H 

(LOS class C). Hep = heptose; KDO = 2-keto-3-deoxyoctulosonic acid; Glc = glucose; Gal = 

galactose; GalNAc = N-acetylgalactosamine; PEA = phosphoethanolamine; NeuAc = 5-

acetamido-3,5-dideoxy-D-glycero-α-D-galacto-non-2-ulopyranosonic acid. 
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Figure 1-3: C. jejuni LOS classes 

Characterisation of 6 C. jejuni LOS classes. Common genes to all known LOS classes are 

coloured mid-grey; genes involved in sialic acid modification are coloured dark grey; other 

glycosyltransferases are coloured light grey (Parker et al. 2005)   

1.1.4.2 Flagella 

C. jejuni possess a single flagellum at either pole; this structure is critical for motility and 

the colonisation of the avian host (Hendrixson and DiRita 2004). The flagellar filament is 

composed of two structural proteins, FlaA and FlaB.  Mutation of the flaA gene results in a 

non-motile phenotype and severe truncation of the flagellum indicating that FlaA is a major 

structural component (Guerry et al. 1991). In contrast, a ∆flaB mutant bears full length 

flagella and shows only partial reduction in motility. The flagellar filament is embedded into 

both the inner and outer membrane via a basal body and hook complex composed of 

multiple structural proteins which allow free rotation of the filament to drive motility 

(Figure 1-1). The flagellar filament of C. jejuni is a coiled-coiled structure composed of 7 

protofilaments with a central lumen, unlike Salmonella typhimurium which is composed of 

11 protofilaments (Galkin et al. 2008).  

The flagellin proteins are O-linked glycosylated with sialic-acid like structures which 

accounts for ~10% of its total mass. O-linked glycosylation involves the addition of a sugar 

moiety to the hydroxyl group of a serine or threonine residue of a target protein. Unlike N-

linked glycosylation there is no known conserved amino acid sequence that dictates which 

residues are to be modified. O-linked glycosylation of flagellin proteins is considered to be 

critical for the assembly of functional flagella and for colonisation in chickens (Howard et al. 

2009). Initial binding studies utilising sialic-acid specific lectins led to the conclusion that C. 
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jejuni flagellin contains sialic acid moieties, however more recent data indicates that these 

modifications are derivatives of sialic-acid like structures Pseudaminic acid (Pse) and 

Legionaminic acid (Leg) encoded by the Pse and Ptm biosynthesis pathways respectively 

(Figure 1-4) (Doig et al. 1996; Howard et al. 2009; Thibault et al. 2001). All C. jejuni strains 

studied to date express either Pse and its derivatives (e.g. strain 81-176) or derivatives of 

both Pse and Leg (e.g. strain 11168). In strain 11168 the flagellin glycosylation genetic 

cluster is composed of ~50 genes which encode Pse and Leg pathways (Parkhill et al. 2000). 

In contrast, strain 81-176 contains only the Pse synthesis pathway. Mutational analysis of 

strain 81-176 found only 3 of the 19 O-linked glycosylated residues are critical for the 

assembly of functional motile flagella, 5 residues are important for auto-agglutination, and 

11 residues at present have no ascribed function (Ewing et al. 2009). The lack of phenotypic 

alteration upon the removal of ~50% of the glycosylation sites and the exposure of these 

residues on the external surfaces of the flagellin monomers suggest that these 

modifications may play a role in interaction with the host. In fact, mutation of the Leg 

structures in strain 11168 dramatically decreases the ability of C. jejuni to colonise the 

chicken GI tract (Howard et al. 2009). Interestingly, “livestock” strains show a greater 

propensity to encode the Leg synthesis genes compared to “non-livestock/environmental” 

strains (Champion et al. 2005). At present, the role and contribution of the glycosylation 

moiety of C. jejuni flagella in modulating human host-pathogen interactions is unknown. 

Unlike many other well-known Gram-negative enteropathogens (e.g. Salmonella, Yersinia 

sp.), C. jejuni lack a functional type III apparatus, instead C. jejuni secrete effector proteins, 

invasion antigens (Cia proteins) and FlaC through the flagella apparatus (Konkel et al. 

2004). This process requires the basal body and hook structure, and one of the FlaA or FlaB 

proto-filaments but not both.    

C. jejuni flagellin proteins are major immunomodulatory antigens during infection and 

significantly contribute to the heat-labile (HL) serotyping of the bacterium (Lior et al. 1982). 

C. jejuni is able to switch between flagellated and aflagellated phenotype; this property 

may allow the flagellin to perform its dual contrasting role(s), firstly in promoting 

colonisation and yet allowing immune evasion (Caldwell et al. 1985). Only motile flagellated 

bacteria were recovered from the stools of human volunteers when the inoculum 

administered contained a mixture of both flagellated and aflagellated bacteria, this data 

highlights the necessity for flagella expression for colonisation of the human GI tract (Black 

et al. 1988). As an immune evasion strategy, C. jejuni has evolved mutations in the FlaA 
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protein such that it no longer interacts with TLR5; how the loss of this interaction renders a 

selective advantage for C. jejuni is not clear (Andersen-Nissen et al. 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4: Structure of Neuraminic acid, Legionaminic acid, and Pseudaminic acid 

derivatives 

(a) N-acetylneuraminic acid (5-acetamido-3,5-dideoxy-D-glycero-α-D-galacto-non-2-

ulopyranosonic acid; Neu5Ac) (b) Legionaminic derivative (5-acetamidino-7-acetamido-

3,5,7,9-tetradeoxy-d-glycero-d-galacto-nonulosonic acid; Leg5Am7Ac) (c) Pseudaminic acid 

derivative (5-acetamido-7-acetamidino-3,5,7,9-tetradeoxy-l-glycero-l-manno-nonulosonic 

acid; Pse5Ac7Am). 

1.1.4.3 Capsule 

The high molecular weight polysaccharide component of the capsule was originally thought 

to be LPS, it was only identified as capsular polysaccharide (CPS) upon the elucidation of 

the genome sequence (Karlyshev et al. 2000; Karlyshev, McCrossan, & Wren 2001). The CPS 

and not the LOS was also found to be the determinant in the heat-stable Penner serotyping 

scheme. The genetic locus for strain 11168 CPS contains 38 genes but this varies widely 

between strains. The genes involved in CPS polymerisation and translocation are conserved 

between strains, however the internal region encoding the CPS repeating units are highly 

(b) (a) 

(c) 

(b) 
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variable (Karlyshev et al. 2005). CPS encoding region can range between 15.2kb and 34.1kb 

in size. Similar to the LOS, phase-variable cps genes have also been identified. The high 

degree of variation implies interaction(s) may occur between C. jejuni CPS and the host. 

Indeed, CPS is important for dampening pro-inflammatory cytokine responses in dendritic 

cells (DCs) as well as invasion of intestinal epithelial cells (IECs) (Bacon et al. 2001; Rose et 

al. 2011)   

1.1.4.4 N-linked Glycosylated Proteins 

C. jejuni was the first bacteria in which an N-linked glycosylation system was identified 

(Wacker et al. 2002). N-linked modified structures bear a sugar moiety attached to the 

amide nitrogen of an asparagine residue. Unlike the glycosylation of other C. jejuni surface 

structures, N-linked glycosylated proteins are highly conserved between strains (Young et 

al. 2002). A heptasaccharide composed of a single bacillosamine moiety attached to a 

linear chain of 5 GalNAc residues with one tertiary glucose residue forms the structure of 

all C. jejuni N-linked carbohydrates. The 12-gene pgl (protein glycosylation) locus encodes 

enzymes required for the synthesis of carbohydrate structures in the cytoplasm and 

subsequent linkage of the heptasaccharides to ~30 target proteins in the periplasm.  

The biological role of the N-linked glycosylation system is not fully understood although 

studies indicate a role in colonisation of the chicken gut, adherence and invasion of human 

IECs and modulation of DC inflammatory cytokine responses (Karlyshev et al. 2004;Rose et 

al. 2011; van Sorge et al. 2009). 

1.1.5 Additional Virulence Factors 

1.1.5.1 Cytolethal Distending Toxin 

Cytolethal Distending Toxin (CDT) is a tripartite complex that causes cell cycle arrest at the 

G1/S or G2/M transition stage (Lara-Tejero and Galan 2000). The active subunit CdtB 

translocates to the nucleus where it acts as a DNase causing DNA damage and cell cycle 

arrest. The role of CDT in pathogenesis is unclear as C. jejuni that lack CDT are still able to 

induce disease in humans (Mortensen et al. 2011). CDT may have a potential role in 

asymptomatic infection as CDT from other species show immunosuppressive capacity via 

induction of apoptosis of T-cells (Shenker et al. 2000).  

1.1.5.2 Invasion Proteins 

C. jejuni secretes Cia proteins via its flagella apparatus. Cia proteins are important in the 

invasion of IECs via the recruitment of Rho GTPase, Rac-1 (Eucker and Konkel 2011). FlaC is 
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structurally similar to FlaA and FlaB. FlaC is secreted via the flagella apparatus and plays a 

role in the invasion of IECs via as yet undefined mechanism(s) (Song et al. 2004).   

1.1.6 Infection Models 

Understanding of C. jejuni pathogenesis lags behind that of other enteric pathogens in part 

due to a lack of good small animal models of disease. Chick models are used for C. jejuni 

colonisation studies, however the pathology associated with human disease is not 

observed. Wild-type (WT) mice of multiple genetic backgrounds show limited colonisation 

of C. jejuni, and pathology is even more infrequent (Chang and Miller 2006; Rathinam et al. 

2008). Until recently, mice with the genetically altered immune systems such as SCID mice 

or IL-10 knock-outs were the most frequently used animal model systems (Chang & Miller 

2006; Lippert et al. 2009; Rathinam, Hoag, & Mansfield 2008). Recently a model replacing 

the enteric flora of WT mice with human flora was described (Bereswill et al. 2011). These 

mice were colonised with C. jejuni and developed inflammatory responses. Larger animal 

models, such as new-borne piglets, are also used for pathogenesis studies however, high 

cost and limited genetic tools make them less desirable (Babakhani, Bradley, & Joens 1993). 

1.2 Gastrointestinal tract 

1.2.1 Ingestion to infection 

The structure of the GI tract, from the mouth to the anus, can be divided into four major 

layers: the mucosa, submucosa, muscularis externa, and serosa. The mucosa broadly 

functions in absorption and secretion: this layer is composed of a single cell epithelial 

lining, beneath which is the “non-organised” lamina propria (LP) containing the majority of 

the immune cells, and a layer a smooth muscle (muscularis mucosae).The structure of the 

mucosa varies widely along the length of the GI tract depending on the function of the 

organ. 

Low pH in the stomach acts as a major chemical defence against ingested pathogens. C. 

jejuni is relatively susceptible to low pH conditions in vitro, surviving less than 60mins at 

pH3.0 (Rotimi et al. 1990). This is in discordance with the low bacterial inoculums of 1000-

10,000 CFU required to cause campylobacteriosis in humans (Black et al. 1988). It has been 

proposed that C. jejuni can withstand the acidic environment via association with food and 

even by inhabiting amoebae as a route into the lower GI tract (Axelsson-Olsson et al. 2010; 

Waterman and Small 1998). 
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The entire GI tract is lined with a single IEC layer that plays a critical in absorption of 

nutrients. The ileum and jejunum lining is organised into crypt and villus macrostructures 

that increase the surface area for absorption of nutrients. The colon lacks villi and functions 

to absorb water and fat-soluble vitamins. Intestinal epithelial cells (IECs or enterocytes) are 

columnar cells with apical invaginations (villi and microvilli) that markedly enhance the 

surface area for optimal absorption. Enterocytes are interspersed with goblet cells that 

secrete mucin, the major component of the mucus layer, which provides a physical and 

chemical barrier keeping commensal and pathogenic microbes at bay and simultaneously 

smoothing the peristaltic movement of passing bolus. Microfold (M) cells are largely found 

in the ileum and lie above the Follicle-Associated Epithelium (FAE) of the Peyer’s Patch (PP). 

M cells allow direct uptake of luminal bacteria and antigens for sampling by the underlying 

immune cells. Stem cells are located in the crypt surrounded by AMP secreting Paneth cells 

(PCs) which provide sterility in a microbe-rich environment. Stem cells differentiate into 

four epithelial lineages which include the enterocytes, PCs, goblet cells, and the neuro-

endocrine cells. Gut-associated lymphoid tissue (GALT) can be subdivided into the 

“organised” tissue of the PPs, isolated lymphoid follicles (LFs), and mesenteric lymph nodes 

(MLNs).  

C. jejuni initially colonises the jejunum and ileum where pathology can occur, however the 

colon is considered to be the major site of pathology in the majority of campylobacteriosis 

cases (Black et al. 1988; Russell et al. 1993). Motility is important in the colonisation of both 

the human and avian gut (Black et al. 1988; Nachamkin et al. 1993). Mucin(s) act as a 

chemoattractant for C. jejuni in part via the L-fucose glycans which can be an energy source 

for specific virulent C. jejuni strains (Hugdahl et al. 1988; Stahl et al. 2011). L-fucose triggers 

the downregulation of CPS which may aid attachment and invasion of IECs. The ability of C. 

jejuni to translocate the IEC layer is considered important in inducing colitis compared to 

eliciting watery diarrhoea (Everest et al. 1992). C. jejuni may translocate the epithelial 

barrier by a number of mechanisms. In a rabbit ileal loop model of infection C. jejuni 

preferentially binds and translocates M cells over enterocytes (Walker et al. 1988).  This 

mechanism of translocation is also important for other enteropathogens such as 

Salmonella, and Yersinia. Both transcellular and paracellular routes of bacterial 

translocation have been demonstrated for C. jejuni in vitro. The ability of C. jejuni to invade 

IECs varies depending on the cell type, however most studies agree that bacterial invasion 

precedes disruption of IEC tight junctions (Bras and Ketley 1999; Wine et al. 2008). The 

advantages for C. jejuni to translocate the epithelium lie in the access to a new ecological 
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niche with limited competition from other bacteria; however the low rates of septicaemia 

associated with infection and the inability to survive within mono-nuclear phagocytes 

suggest C. jejuni is not a particularly successful pathogen within the mucosa (Allos 2001; Hu 

et al. 2006). Recent reports showing the ability of C. jejuni to survive within IECs highlights 

this cell type as a potential harbour for the bacterium in the human intestine (Watson and 

Galan 2008). 

1.3 Epithelial Responses 

1.3.1  Epithelial Adhesion, Invasion & Intracellular Survival 

The ability of C. jejuni to adhere to and invade IECs has been demonstrated in several cell-

lines as well as in human colonic biopsies (Bras & Ketley 1999; Edwards et al. 2010; van 

Spreeuwel et al. 1985; Wine, Chan, & Sherman 2008; Zilbauer et al. 2007). C. jejuni 

manipulates both the microtubular and actin cytoskeleton to gain entry into IECs (Eucker & 

Konkel 2011; Watson & Galan 2008). C. jejuni binds to fibronectin and integrin complexes 

on IECs via fibronectin-binding proteins triggering epidermal growth factor receptor (EGFR)-

mediated-signalling (including phosphinositide 3-kinase (PI3K) activation)  and subsequent 

endocytosis (Eucker & Konkel 2011), the latter depending upon lipid rafts and caveolin for 

formation of a C. jejuni-containing vacuole (CCV) (Watson & Galan 2008). The CCV follow a 

non-canonical endocytic pathway and avoid lysosomal fusion allowing C. jejuni to survive 

within IECs for >24h.  

1.3.2 Pathogen Recognition 

Adhesion and invasion of IECs by C. jejuni is associated with the secretion of the pro-

inflammatory cytokines, IL-8 & IL-6, and the induction of AMPs human beta-defensins 2 & 3 

(hBD-2 & 3) (Friis et al. 2009; Watson and Galan 2005; Zilbauer et al. 2005). C. jejuni-

mediates activation of multiple IEC signalling pathways; these include nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinases 

(MAPKs), and PI3K activation. The MAPK, extracellular signal-related kinase (ERK), is critical 

for IL-8 responses (Watson & Galan 2005). Interestingly, the ∆flaA mutant exhibits reduced 

ERK-stimulating capability, suggesting receptors independent of TLR5 are important for the 

recognition of C. jejuni flagellin in IECs. The only IEC pattern recognition receptors (PRRs) 

identified to date that recognises C. jejuni are NOD-1, which reduces intracellular bacterial 

survival and drives IL-8 and hBD-2 expression, and TLR2 which induces IL-6 secretion (Friis 

et al. 2009; Zilbauer et al. 2007).  
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1.4 Innate Immunity to C. jejuni 

1.4.1.1 Host Factors  

Host genetics and acquired immunity play important roles in the clinical manifestations of 

C. jejuni infection. Acquired immunity to C. jejuni limits symptomatic disease but not 

eliminate colonisation. In addition, genetic factors have been implicated as important in 

the development of campylobacteriosis and post-infection sequelae (Janssen et al. 2008). A 

single-nucleotide polymorphism (SNP) in the first intron of the interferon gamma (IFNγ) 

gene is associated with C. jejuni-associated enteritis (Nielsen et al. 2012). This association 

implicates T helper 1 (Th1) responses in host immunity to C. jejuni infection.  Two possible 

scenarios could explain this association. Firstly, an inappropriate overt IFNγ-mediated 

increase in pro-inflammatory responses may directly promote immune-mediated enteritis 

and pathology or an initial suboptimal IFNγ response may lead to unsuccessful bacterial 

clearance, a trigger for exacerbation of inflammation. As the impact of this SNP on cytokine 

induction is unknown theoretically both scenarios are plausible explanations for this 

association. Interestingly, the same SNP is associated with the development of RA, however 

again either of these two scenarios could explain this association.  Interestingly, IL-10 

promoter and TLR4 promoter polymorphisms have been associated with GBS which also 

implicates the regulation of the immune response to the development GBS (Myhr et al. 

2003; Nyati et al. 2010).    

1.4.2 Innate Immune Cells of the GI mucosa 

After translocation through the epithelial barrier, C. jejuni is sensed by innate immune cells 

of the LP. In addition, infected IECs signal to underlying immune cells. Chemokines, such as 

IL-8, drive an influx of neutrophils which promote bacterial clearance and halt systemic 

spread and yet overt presence of neutrophils is characteristic of the inflammatory 

pathology (Figure 1-6) (van Spreeuwel et al. 1985). Activated professional antigen 

presenting cells (APCs) trigger an adaptive immune response which further stimulates the 

innate system to clear C. jejuni and limit bacteraemia (Fernandez-Cruz et al. 2010). 

APCs that reside in the LP under homeostatic conditions generally express a more 

“tolerogenic” phenotype and sense commensal bacteria in the lumen either directly or 

indirectly via the epithelium without activating an inflammatory response. However, during 

infection migrating APC are able to activate pro-inflammatory adaptive immunity either in 

the draining lymph nodes (LN) or within the LP. 
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1.4.2.1 Dendritic Cells 

Dendritic cells (DCs) bridge the innate and adaptive immune response by acting as APCs 

that have the capacity to promote naïve CD4+ T helper cell differentiation and functions. 

Upon encountering bacteria DCs phagocytose, process and present antigen to T-cells in the 

context of MHC class II or cross-presentation on MHC class I. In addition, DCs undergo a 

maturation process that involves the upregulation of co-stimulatory molecules and 

secretion of a plethora of cytokines that tailors the adaptive immune response to the 

nature of the infectious insult. Although the IEC layer acts as a barrier between the lumen 

and the GALT, DCs can make direct contact with luminal antigens by sampling via DC 

protrusions (Rescigno et al. 2001) or indirectly as antigens pass through M-cells and IECs.  

Functionally, DCs have the challenging task of remaining tolerogenic to gut microflora 

whilst retaining the capability to mount appropriate immunity to potential pathogens. It is 

therefore logical that multiple subsets of DCs exist with more specialised functions. In the 

murine mucosa CD103+ (the receptor for E-Cadherin, an IEC adhesion molecule) DCs 

migrate to the MLN via expression of CCR7 and induce the differentiation of regulatory T-

cell (Tregs) (Coombes et al. 2007). However, under inflammatory conditions CD103+ DC 

induce Th1 and Th17 responses (Laffont et al. 2010). CX3CR1+ positive-DCs are able to 

extend dendrites and directly sample luminal antigens (Niess et al. 2005). Interestingly, 

CX3CR1+ DCs are programmed with more pro-inflammatory capabilities than CD103+ DCs. 

CX3CR1+ DC lack migratory properties, they are therefore hypothesised to play a greater 

role in modulating local mucosal immunity (Schulz et al. 2009). Absence of enteric 

microflora reduces CX3CR1+ but not CD103+ DC numbers (Niess and Adler 2010). This 

suggests that under inflammatory conditions an increase in pro-inflammatory CX3CR1+ DCs 

may drive T-cell polarisation directly in the LP towards a Th1/Th17 phenotype.  

For purpose of investigation, human peripheral blood monocyte-derived DCs or murine 

bone marrow-derived DCs (BMDCs) are frequently used in in vitro co-culture assays. Both 

DC types model a more inflammatory monocyte-derived DC subset, which is more likely to 

be present during intestinal infection and inflammation. C. jejuni is readily phagocytosed 

and killed by human monocyte-derived DCs and murine BMDCs (Hu et al. 2006; Rathinam, 

Hoag, & Mansfield 2008). In contrast other enteropathogens such as Salmonella enterica 

survive within APCs which may explain greater incidence of systemic disease (Abrahams 

and Hensel 2006) when compared to campylobacteriosis. H. pylori can also replicate within 

BMDCs for a limited time. A >1 log fold-increase between 2 and 6h post-innoculation has 

been observed, declining thereafter (Wang, Gorvel et al. 2010).  
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1.4.2.2 Macrophages 

Resident gut–associated macrophages largely reside within the LP and lack inflammatory 

responsiveness to many microbe-associated molecular patterns (MAMPs), this is due to low 

expression of TLR-associated adaptor molecules (Smythies et al. 2010). Intestinal 

macrophages are able to phagocytose whole bacteria and cellular debris but secrete the 

anti-inflammatory cytokine IL-10 and not pro-inflammatory cytokines (Denning et al. 2007). 

This is in contrast to the chronic inflammatory setting of IBD where a CD14+ subset of 

macrophages secretes a number of pro-inflammatory cytokines that contribute to disease 

pathogenesis (Kamada et al. 2008). This suggests that macrophages that migrate to the gut 

retain pro-inflammatory capabilities that may activate adaptive immunity whereas resident 

macrophages may function to clear IECs debris or commensal bacteria without eliciting a 

strong inflammatory response.  

Studies performed to date analysing macrophage responses to C. jejuni have utilised 

phorbol 12-myristate 13-acetate (PMA)-stimulated THP-1 cells which display a phenotype 

between the monocyte/macrophage stages of differentiation. Unlike resident intestinal 

macrophages, PMA-stimulated THP-1 cells are capable of eliciting pro-inflammatory 

responses to TLR ligands. C. jejuni induces IL-1β secretion from PMA-stimulated THP-1 cells 

(Siegesmund et al. 2004). In addition C. jejuni induces apoptosis via a caspase-1 and -9 

independent pathways which is partially reliant on the ability of C. jejuni to produce Cia 

invasion antigens. This suggests that bacterial driven macrophage apoptosis may be a 

potential immune evasion strategy, however at present the effects of C. jejuni on resident 

intestinal macrophages is unknown. Phagocytosed C. jejuni is readily killed by murine BM 

macrophages; earlier studies however suggested C. jejuni can survive within 

monocytes/macrophages for up to 7 days (Kiehlbauch et al. 1985; Watson & Galan 2008). 

The use of different cell types may account for this discrepancy, it is however interesting to 

speculate that a potential difference in the bactericidal activity of resident intestinal 

macrophages may allow them to harbour viable C. jejuni.    

1.4.2.3 Polymorphonuclear Cells 

Polymorphonuclear (PMN) cells or granulocytes include neutrophils, eosinophils, basophils, 

and mast cells. Eosinophils, basophils, and mast cells play an important role in Th2 

mediated pathology of allergic disease and shall not be discussed further. Neutrophils 

engulf and rapidly kill bacteria via production of reactive oxygen species (ROS) within the 

phagolysosome. Neutrophils play a critical role in resolution of many infections as they 

have the most potent phagocytic and bactericidal capability of all the phagocytes. The level 
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of PMN infiltration in the GI mucosa of children during C. jejuni infection correlates with 

the degree of inflammation (Everest et al. 1992), this evidence implicates PMNs in the 

acute inflammatory pathology seen in some C. jejuni infections. A similar association is also 

seen in a rabbit ileal loop model of C. jejuni infection (Everest et al. 1993). Interleukin 8 (IL-

8) and leukotriene B4 (LTB4), are neutrophil chemoattractants secreted by IECs and 

neutrophils respectively and are both induced in response to C. jejuni infection (Everest et 

al. 1993; Watson & Galan 2005). Although the main function of neutrophils is to limit 

systemic spread of C. jejuni, they may also contribute to pathology by the release of toxic 

ROS (Figure 1-6). In addition, neutrophils can migrate between IECs and into the lumen 

thus disturbing barrier integrity (Sun et al. 2011).  

Interestingly, colonisation of the avian GI tract by C. jejuni induces IL-8, and yet this 

increase is not associated with an increase in heterophil numbers (the avian equivalent to 

neutrophil) (Meade et al. 2009), although an increase in circulating 

monocytes/macrophages is observed. Potentially the lack of heterophils may account for 

the persistent colonisation and yet disease free status of the avian gut in response to C. 

jejuni.  

1.4.2.4 Natural Killer cells,  Lymphoid Tissue-Inducer Cells & Gamma-Delta T cells 

Local, mucosal sources of IFNγ, IL-22, and IL-17 provide an early host defence shield in 

response to infection, long before the adaptive immune system comes into play. Natural 

killer (NK) cells, lymphoid tissue-inducer (LTi) cells, and gamma-delta (γδ) T cells are innate 

immune cells that reside within the LP and GALT and are able to produce an array of host-

defence peptides. In an ex vivo human intestinal biopsy model of infection C. jejuni induced 

IFNγ, IL-22, and IL-17A within 8h of infection suggesting a robust  source of these cytokines 

is present in the LP and GALT (Edwards et al. 2010). C. jejuni expands γδ T cells in the 

presence of CD4+ T cells, suggesting this cell population may also be activated during 

infection (Van Rhijn et al. 2003). At present there is no data available on the cytokine 

responses of this cell population. C. jejuni LOS bearing a α2, 8-linked sialic acid moiety 

interacts with the inhibitory sialic-acid binding immunoglobulin-like lectin 7 (Siglec-7) on NK 

cells but the functional consequence of this interaction remains unclear (Avril et al. 2006).   

1.4.3 Soluble Mediators of Innate Defense 

1.4.3.1 Complement 

Complement activation is a key part of the innate immune defence towards limiting 

systemic spread of pathogens. C. jejuni is susceptible to human serum suggesting sensitivity 
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towards complement components (Blaser et al. 1985). However, C. fetus is less sensitive to 

human serum. It has been hypothesised that the discrepancy between the sensitivity of the 

two species may account for why C. fetus is more frequently found in patients suffering 

from septicaemia.  

1.4.3.2 Anti-microbial peptides 

Anti-microbial peptides (AMPs) are a diverse group of small cationic peptides that possess 

bactericidal activity by targeting the cell membrane of microbes. Two IEC AMPs, HBD-2 and 

-3 are induced in response to C. jejuni (Zilbauer et al. 2005). C. jejuni is sensitive to the 

effects of HBD-2 and -3 which cause a “peeling” of the cell wall and loss of cytoplasmic 

contents. Surprisingly elimination of the capsule does not increase sensitivity to AMPs. 

Indeed, other studies have shown the importance of the LOS structure but not the capsule 

for resistance to the antibiotics erythromycin and polymixin B (Jeon et al. 2009; Naito et al. 

2010). The PEA modification of the lipid A and oligosaccharide of C. jejuni LOS are 

important for AMP resistance, which is likely to involve charge interactions as both PEA and 

sialic acid residues are negatively-charged (Cullen & Trent 2010; Naito et al. 2010). 

Interestingly, C. jejuni colonisation of chicken reduces expression of 7 different AMP genes 

in comparison to Salmonella typhimurium which induces expression (Meade et al. 2009). 

Reduced AMP expression is hypothesised to contribute to the observed high C. jejuni 

bacterial load and may also contribute to systemic spread. In humans, a robust AMP 

response may limit C. jejuni numbers in the intestine and therefore halt systemic spread.   

1.4.4 Cytokine Responses to C. jejuni infection 

C. jejuni-mediated infection induces a pro-inflammatory response from IECs, innate, and 

adaptive immune cells. Chemokines such as IL-8, monocyte chemoattractants chemokine 

(C-C motif) ligand 2 (CCL2; MCP-1) and CCL4 (MIP1β) are secreted from C. jejuni-stimulated 

IECs (Hu and Hickey 2005; Watson & Galan 2005). Co-culture experiments with human ex 

vivo intestinal biopsies also show elevated IL-8 levels (MacCallum et al. 2006).  

C. jejuni also stimulates pro-inflammatory cytokine induction in DC and macrophages 

(Edwards et al. 2010; Hu et al. 2006;Rathinam, Hoag, & Mansfield 2008). Increase in acute-

phase response inducers tumour necrosis factor-alpha (TNF-α) and IL-6, as well as Th1 and 

Th17 polarising cytokines IL-12 and IL-23 respectively has also been noted (Edwards et al. 

2010). Similar to IEC responses, no dramatic difference between human and chicken C. 

jejuni-stimulated macrophages/monocytes has been observed (de Zoete et al. 2010). 

Minimal levels of IL-1β have also been detected in ex vivo stimulated biopsies (Edwards et 
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al. 2010). A recent report suggested that induction of the potent anti-inflammatory 

cytokine IL-10 may be flagellin-dependent (Rose et al. 2011). Whether the induction of IL-

10 by C. jejuni is an immune evasion strategy has yet to be investigated. 

1.4.5 Microbial detection by the innate immune system   

To detect microbes, immune and non-immune (e.g. IEC) cells express a plethora of PRRs 

that bind to evolutionary conserved microbe-associated molecular patterns (MAMPs) 

leading to appropriate cellular activation. This model was first proposed by Charles 

Janeway in 1989 (Janeway, Jr. 1989) but it is now widely accepted that the same system 

can also detect endogenous danger signals as suggested by Polly Matzinger (Matzinger 

2001). It is now recognised that components from both commensal bacteria MAMPs and 

pathogens (PAMPs) activate PRRs. It is therefore predicted that availability of 

MAMPs/PAMPs for their cognate receptors largely detects activation of inflammatory 

responses in the gut. The thick mucus layer likely goes some way to minimise contact 

between commensal microflora and cells of the mucosa. 

1.4.5.1 Toll-like receptors 

Toll-like receptors (TLRs) were the first PRR family to be implicated in mediating anti-fungal 

immunity in drosophila (Lemaitre et al. 1996). Subsequently a human homolog of TOLL, 

TLR4, was identified (Medzhitov et al. 1997). TLRs are type-1 transmembrane proteins, 

comprised of a C-terminal Leucine-Rich Repeat (LRR) domain that is ligand (MAMP)-

binding, a single membrane spanning domain, and an N-terminal cytoplasmic Toll/IL-1R 

(TIR) homologous interacting domain that is capable of binding adaptor molecules to 

orchestrate signalling cascades. There are 11 known mammalian TLRs that function as 

homo- or hetero-dimers. TLRs are expressed either on the cell surface or within 

endosomes. TLRs are known to bind a diverse array of microbial products of viral, bacterial 

and fungal origin. The best characterised of these is the receptor for LPS/LOS, TLR4. Jules 

Hoffmann and Bruce Beutler were awarded a share of the 2011 Nobel Prize for Medicine 

for the discovery of the TLR-mediated antifungal cascade and elucidation of the interaction 

between LPS/LOS and TLR4 respectively; these discoveries are seen as pivotal to our 

current understanding of fundamental signals employed by the innate immune system to 

detect and respond to infection (Poltorak et al. 1998). 

Signalling downstream of TLRs is mediated by a number of scaffolding proteins that contain 

TIR-containing adaptor molecules; myeloid differentiation primary response protein 

(MyD88), MyD88 adaptor-like (Mal), TIR domain-containing adaptor inducing IFN-β (TRIF), 
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and TRIF-related adaptor molecule (TRAM). TLR signalling cascades result in activation of 

MAPK, NF-κB, and interferon regulatory factor (IRF) pathways which are central master 

regulators of inflammatory response(s) (Figure 1-5) (Kawai and Akira 2006). TLR signalling 

has also been implicated in the phagocytosis and the maturation of the phagolysosome 

(Blander and Medzhitov 2004).  

C. jejuni activates human TLR1/2/6, and TLR4/MD2 (de Zoete et al. 2010). C. jejuni di- and 

tri-acylated lipoproteins are the predicted ligands for TLR 1/2 and TLR 2/6, and LOS is the 

known ligand for TLR4/MD-2 (Kuijf et al. 2010). TLR signalling is a critical regulator in the 

gut. TLR5-/- mice have increased bacterial load and develop spontaneous colitis which is 

associated with elevated pro-inflammatory cytokine levels (Vijay-Kumar et al. 2007). 

Interestingly, TLR5-/- TLR4-/- double knock-out mice have increased bacterial load but do not 

develop colitis suggesting TLR signalling within the gut is important for regulating the 

enteric flora but under certain circumstances can also drive inflammatory pathology. C. 

jejuni can successfully colonise MyD88-/- but not WT mice highlighting the role for TLR 

signalling in colonisation resistance in this model (Watson et al. 2007). Expression of TLRs in 

the gut may vary between species which may contribute to the different outcomes 

observed. C. jejuni is able to stimulate chicken TLR2 and TLR4 homologs (de Zoete et al. 

2010). Interestingly, the chicken TLR9 ortholog, chTLR21, is able to sense C. jejuni DNA 

unlike the human counterpart. In addition, activated chicken TLR4 is unable to induce a 

type 1 IFN response unlike human TLR4. Whether these discrepancies play a role in the 

different outcomes of C. jejuni infection between humans and chickens requires 

clarification.  

1.4.5.2 Nucleotide Oligomerisation Domain-like receptors 

The nucleotide oligomerisation domain (NOD)-like receptors (NLRs) are a group of 

cytoplasmic microbial sensors. NLRs are composed of an effector domain, a nucleotide-

binding domain (NBD), and an LRR ligand binding domain. The NBD is implicated in complex 

oligomerisation which is necessary for NLR function. NLRs can be subdivided based on the 

presence of a caspase-recruitment effector domain (CARD) or pyrin effector domain (PYD). 

NOD1 and NOD2 are two NLRs that recognise muropeptide iE-DAP and muramyl dipeptide 

(MDP) respectively, two subcomponents of peptidoglycan (PGN) which is found in the cell 

wall of both Gram-positive and Gram-negative bacteria. Activation of NOD1 and NOD2 

triggers the formation of a signalling complex containing receptor-interacting 

serine/threonine kinase-2 (RIP2) and cellular inhibitor of apoptosis (cIAP) 1 and 2 which 

leads to the activation of NF-κB and MAPK cascades (Bertrand et al. 2009). NOD1 and 
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NOD2 can synergise with TLR signalling to either dampen or stimulate pro-inflammatory 

responses depending on the cellular context (Fritz et al. 2005; Watanabe et al. 2004). 

In IECs, C. jejuni activates NOD1 but not NOD2 to induce the secretion of HBD2 and IL-8 

(Zilbauer et al. 2007). NOD1 activation also minimises intracellular C. jejuni numbers. C. 

jejuni can also activate NOD2 in a reporter cell-line but the functional consequences of this 

is unknown (Al-Sayeqh et al. 2010; Zilbauer et al.2007). 

The inflammasome 

A subfamily of the NLRs activates caspase-1 rather than the NF-κB signalling pathways. 

Upon activation these NLRs form a complex called the “inflammasome” in the cytoplasm 

that cleaves pro-caspase-1 to active caspase-1 (Martinon et al. 2002). NLR proteins utilise 

their PYD and CARD domains to form the inflammasome, the complex formation 

culminates in the recruitment of apoptosis-associated speck-like protein containing a CARD 

(ASC) and procaspase-1. Autocatalytic cleavage of the latter releases active caspase-1, the 

enzyme responsible for cleaving pro-IL-1β, pro-IL-18, and pro-IL-33 resulting in their release 

from the cell. Bioactive IL-1β and IL-18 are potent pro-inflammatory activators with 

multifactorial properties, not surprisingly overt expression and release is tightly regulated 

at multiple levels. Transcription levels are controlled by TLRs and NOD1/NOD2 pathways 

and post-translation modification by the inflammasome. This is called the “two-hit” 

hypothesis. Activation of the inflammasome can also trigger cell death via pyroptosis. The 

activation of the inflammasome is triggered by a diverse variety of PAMPs and also by 

endogenous danger-associated molecular patterns (DAMPs). The presence of circulating 

binding proteins (e.g. IL-1 receptor antagonist and IL-18 binding protein) provides another 

level of regulation for this family of cytokines. 

The Inflammasome has been implicated in the sensing of multiple enteropathogens 

including Salmonella typhimurium and Escherichia coli (Miao et al. 2010b). Inflammasome 

activation is critical for clearing pathogens when cleavage of IL-1β/IL-18/IL-33 and/or the 

induction of pyroptosis are required. In a murine model of Salmonella typhimurium, 

infection leads to systemic disease and death. However, infection with S. typhimurium 

which constitutively expresses the flagellin protein (flagellin is recognised by the NLR 

member, IPAF, causing pyroptosis of infected macrophages and clearance by PMNs) does 

not lead to death, mainly due to inflammasome function (Brodsky et al. 2010; Miao et al. 

2010a). It is not surprising that some pathogens have evolved mechanisms to suppress 

inflammasome function. Mycobacterium tuberculosis produces a zinc metalloprotease 
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which inhibits inflammasome activation in macrophages (Master et al. 2008). Yersinia sp. 

secretes an effector protein YopK, which interferes with recognition of its type III secretion 

system by macrophages (Brodsky et al. 2010). To date the potential role of the 

inflammasome during infection with the order Campylobacterales has not been reported  

1.4.6 Glycan Receptors 

Glycosylation of surface structures lends microbes with potential fitness advantages. These 

include survival in harsh and varying environments; assembly of surface structures; 

adherence and invasion of target cells; and disguise antigenic surface proteins during 

engagement with the host immune system. Glycans are less immunogenic than protein 

counterparts as they are not generally presented on MHC molecules to T cells, and are 

therefore T-cell independent antigens with some noted exceptions. For example, recent 

findings have demonstrated the capacity of polysaccharides from commensal bacteria to 

influence the mucosal immune system. Polysaccharide A (PSA) is a component of the CPS of 

the human commensal bacterium Bacteroides fragilis. PSA can bind directly to TLR2 on 

mucosal CD4+ T cells and generate Treg differentiation by inducing IL-10, TGF- β, and Foxp3 

which subsequently inhibit Th17 responses (Round et al. 2011). The induction of Tregs 

allows closer association of B. fragilis with the epithelium in a mouse model, which 

suggests this could also be a mechanism exploited by pathogens although this has not been 

investigated. Bacterial glycan structures can bind to a wide variety of host receptors 

expressed on immune and non-immune cells. These interactions have been shown to both 

enhance and dampen pro-inflammatory immune responses to C. jejuni (Kuijf et al. 2010; 

van Sorge et al.2009). 

1.4.6.1 Sialic-acid binding Ig-like receptors  

Sialic-acid binding immunoglobulin-like receptors (Siglecs) are a group of receptors largely 

expressed on the surface of haemopoeitic cells. Siglecs are composed of a single trans-

membrane domain, multiple extracellular immunoglobulin (Ig) domains that bind ligand, 

and a cytoplasmic intracellular inhibitory motif (ITIM) domain which exerts regulatory 

function. Some Siglecs contain an intracellular growth factor receptor binding protein-2 

(Grb2) binding motif and ITIM-like motifs that do not conform to canonical ITIM sequences, 

the functional consequences of these domains upon receptor ligation remains largely 

uncharacterised (Crocker et al. 2007). There are two sub-categories of Siglec receptors 

based on sequence similarity. The first includes Sialoadhesin, CD22, Siglec-4 and -15; the 

second subset share sequence homology with CD33 and are termed the CD33-related 

siglecs (Crocker, Paulson, & Varki 2007; Crocker and Redelinghuys 2008). The CD33-related 
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Siglecs are rapidly evolving, with variation in the numbers of receptors between species, 

even in higher order mammals.  There are currently 10 known human CD33-related Siglecs 

which are expressed on both innate and adaptive immune cells (Lock et al. 2004). Although 

humans display the most rapid rate of Siglec evolution, lower Siglec expression in human 

compared to chimpanzee T cells has been implicated in the heightened reactivity of human 

T cells to many stimuli (Soto et al. 2010). Additionally, the lower expression is hypothesised 

to contribute to the “over-reactivity” of the human immune system which leads to diseases 

such as asthma and RA.  

Siglecs bind sialylated structures (most often sialylated glycans) via the terminal V-set Ig 

domain, and have varying specificities for the linkage of the sialic acid and the underlying 

glycan structure which can be present on both host cells and microbes. Interestingly, recent 

reports have also highlighted the ability of Siglecs to bind to both host and pathogen non-

sialylated ligands. Siglec-5 can bind the β-protein of group B Streptococcus (Carlin et al. 

2009a), and Siglec-10 can bind vascular adhesion protein-1 (Kivi et al. 2009). However it is 

unlikely that these interactions occur via the sialic-acid binding pocket.  

Siglec engagement has been implicated in many cellular processes including endocytosis, 

apoptosis, cellular activation, and proliferation (Crocker, Paulson, & Varki 2007). The 

immunomodulatory capability of Siglecs is often via the modulation of TLR signalling (Boyd 

et al. 2009). Siglecs can bind to host cell surface sialic acid both via cis (on the same cell) 

and trans (different cell) interactions. Binding of Siglec-10 (murine Siglec-G) by the receptor 

CD24 (ligated to the DAMPs, high mobility group box 1 (HMGB1) or heat shock proteins) 

leads to down-regulation of NF-κB signalling, protecting  mice in a inducible liver necrosis 

model (Chen et al. 2009). This suggests that Siglecs play a role in limiting immune responses 

to DAMPs. This immune modulatory capability of Siglecs may have been exploited by 

pathogens during evolution as binding to these receptors potentially reduces immune 

activation and therefore increase chances of establishing infection. Many sialylated 

pathogens engage Siglecs, including C. jejuni (Avril et al. 2006; Heikema et al. 2010). 

Engagement of Siglec-9 by sialylated CPS and Siglec-5 by β-protein by Group B 

Streptococcus reduces the oxidative burst of neutrophils and increases intracellular survival 

(Carlin et al. 2009a; Carlin et al. 2009b). Engagement of murine Siglec-E by Trypanosome 

cruzi reduces DC IL-12 production which alters subsequent T-cell activation (Erdmann et al. 

2009). C. jejuni strains that contain terminal α2,8-linked and α2,3-linked sialic-acid on the 

LOS bind to Siglec-7 and Sialoadhesin respectively (Avril et al. 2006; Heikema et al. 2010). 
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The differential expression of these linkages drives alternative T cell responses, a factor 

which is hypothesised to impact on the development of GBS post C. jejuni-infection (Bax et 

al. 2011). 

Multiple hypotheses have been proposed for the cause of rapid evolution of CD33-related 

Siglecs. One hypothesis is a need to keep pace with the changing host sialome (Crocker, 

Paulson, & Varki 2007). As high percentage of sialic-acid containing pathogens infect 

humans; this raises a second hypothesis that rapid evolution may allow Siglecs to act as 

potential PRRs aiding in microbe detection (Crocker, Paulson, & Varki 2007). However, the 

evolution of Siglec “paired-receptors” which share structural identity of the ligand binding 

domain but lack the intracellular signalling domain suggest this could be a decoy strategy 

by the host to counteract the immune inhibition pathogens achieve on Siglec engagement, 

therefore supporting the first hypothesis (Crocker & Redelinghuys 2008). Until further 

studies detailing the functional consequences of Siglec engagement during infection are 

performed their exact role in either microbe recognition or/and immune evasion strategies 

remains open.  

1.4.6.2 C-type Lectin Receptors 

Similar to Siglecs, C-type lectin receptors (CLRs) are group of receptors that are prominently 

found on the surface of immune cells. CLRs contain a single trans-membrane domain, a C-

type lectin-like domain (CTLD) involved in ligand binding, and often an intracellular 

signalling domain (Osorio and Reis e Sousa 2011). Upon engagement CLRs potentially 

initiate or dampen/modulate immune responses. Similar to Siglecs, engagement of CLRs 

often leads to modulation of TLR signalling, and has therefore been described as an 

immune evasion strategy in some instances. Mycobacterium tuberculosis and Candida 

albicans are able to induce IL-10 secretion by engaging the CLR DC-SIGN, via prolonged NF-

κB activation (Gringhuis et al. 2007). As a consequence of modulating innate immune 

effector responses, engagement of CLRs can have downstream effects on T-cell 

polarisation. H. pylori interaction with DC-SIGN reduces DC cytokine induction which stunts 

Th1 responses (Bergman et al. 2004). Neisserria gonorrhoea activates DC-SIGN or the CLR 

macrophage-binding galectin (MGL) on DCs depending on the terminal sugar moiety on its 

LOS (van Vliet et al. 2009). Engagement of MGL skews T helper responses towards an 

unproductive Th2 response.  

GalNAc residues on N-linked glycosylated proteins on the surface of C. jejuni bind the CLR 

MGL. In addition the LOS from certain strains bearing a terminal GalNAc residue can also 
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bind MGL. This interaction with MGL has shown to reduce DC IL-6, indicating that certain C. 

jejuni surface structures may actively promote immune suppression (van Sorge et al. 2009).  

1.4.7 Signalling 

Linking microbial recognition to innate immune cell effector responses and T helper cell 

polarisation involves a complex network of intracellular signalling cascades. Many cellular 

events are triggered in innate immune cells by microbes; three of the major pathways that 

are activated downstream of MyD88-dependent TLR signalling are the NF-κB, MAPKs, IRFs 

(Figure 1-5). 

1.4.7.1 Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells  

The NF-κB family is comprised of five related transcription factors, p50, p52, p65, RelA, and 

RelB. In unstimulated cells, inhibitor of NF-κB (IκB) sequesters inactive NF-κB in the 

cytoplasm. Upon cellular activation, IκB is degraded allowing NF-κB to undergo nuclear 

translocation and initiate transcription of NF-κB responsive genes by binding to κB sites in 

gene promoter or enhancer regions. NF-κB molecules form functional heterodimers before 

translocation to the nucleus (Ghosh and Hayden 2008).  

In vitro inhibitor studies have revealed a critical role for NF-κB signalling in the induction of 

inflammatory cytokines both in C. jejuni-stimulated IECs and DCs (Lippert et al. 2009). In a 

gnotobiotic IL-10-/- NF-κB-reporter murine model, pathology is associated with NF-κB 

activation in lamina propria mononuclear cells (LPMC) and induction of IL-12p40 and TNF-α 

(Lippert et al. 2009). However, the use of NF-κB inhibitors did not ameliorate C. jejuni-

mediated pathology suggesting this signalling pathway alone is not responsible for the 

inflammatory nature of campylobacteriosis in this model. 

1.4.7.2 Mitogen-Activated Protein Kinases 

MAPKs are a family of serine/threonine kinases that have multiple roles in cellular biology 

including: cellular proliferation/survival, transcription induction, cellular movement, as well 

as induction of inflammatory responses after microbe recognition. MAPKs are activated by 

upstream MAPK kinases, which in turn must be activated by MAPK kinase kinases (MAP3K). 

Once activated MAPKs regulate a number of different transcription factors that are 

involved in immune function. Regulation of activation is tightly controlled, for example 

MAPKs can regulate their own activation by negative feedback mechanisms involving 

activation of one of three classes of protein phosphatases (Jeffrey et al. 2006). 
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There are three major MAPK family members: Extracellular signal-regulated kinases (ERKs), 

c-Jun N-terminal kinase (JNK), and p38. They exert cell-specific effects on cellular processes. 

p38 and JNK are linked to pro-inflammatory responses. p38 was first identified as the target 

of pyridinyl imidazoles, a group of compounds capable of inhibiting monocyte TNF-α and IL-

1 secretion (Lee et al. 1994). ERK has been linked to pro-inflammatory responses in DCs 

(Boele et al. 2009), but it can also influence IL-10 and TGF-β expression, and the 

development of Tregs (Escors et al. 2008). MAPKs activate transcription factors that 

differentially regulate inflammatory gene expression. For example TLR-mediated ERK-

dependent activation of AP-1 is essential for IL-23 p19 gene expression, although this 

pathway does not elevate IL- 12/IL-23 p40 expression (Liu et al. 2009). The profile of 

transcription factor activation by these pathways tailors a specific immune response. TAK1 

is an important MAP3K, downstream of many PRRs including TLRs, and is capable of 

activating all three MAPK members. In addition, TAK1 can activate NF-κB directly through 

the ubiquitination and degradation of inhibitory IKK molecules (Sato et al. 2005). In 

addition to gene regulation, MAPK can also participate in microbe uptake. Syk is a tyrosine 

kinase downstream of many CLRs and is involved in multiple immune functions including 

cytoskeletal rearrangement for phagocytosis. ERK-mediated Syk activation has been linked 

to the phagocytosis of Francisella tularensis by macrophages (Parsa et al. 2008). C. jejuni 

induces ERK and p38 activation in IECs leading to IL-8 production (Watson & Galan 2005).  

No studies to date have investigated the role of MAPK signalling in C. jejuni-mediated 

innate immune cell activation. 

1.4.7.3 Interferon-regulatory transcription factors   

Interferon-regulatory transcription factors (IRFs) are a family of transcription factors 

involved in the regulation of type 1 interferon genes. IRF3 is downstream of TRIF-mediated 

signalling (Figure 1-6). IRF3 phosphorylation in response to C. jejuni occurs in a TLR-

dependent manner, this molecular signature is associated with an upregulation of IFN-β 

secretion (Rathinam et al. 2009). Much less is known about the role of type 1 interferons 

during intracellular bacterial infection than viral infections, although evidence suggests that 

IFN-β may enhance anti-bacterial effects through a positive feedback mechanism (Gautier 

et al. 2005).     
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Figure 1-5: TLR signalling pathways 

TLR engagement leads to activation of two major downstream signalling pathways. The 

MyD88-dependent pathway is downstream of all TLRs except TLR3 and leads to the 

activation of NF-κB and MAPK. The TRIF-dependent pathway (or MyD88-independent 

pathway) is downstream of TLR3 and TLR4 and involves the activation of IRF3 and induction 

of type 1 IFN inducible genes. 

1.4.7.4 Phosphoinositide-3-Kinase  

PI3K signalling pathways have been implicated in a diverse array of cellular function 

including growth, proliferation, survival, and motility. Recent findings have implicated PI3K 

in the dampening of pro-inflammatory NF-κB signalling in response to LPS (Weichhart et al. 

2008). Mammalian target of rapamycin complex-1 (mTORC1) is downstream of PI3K 

activation, and is inhibited by rapamycin. Interestingly, treatment with rapamycin, an 

inhibitor of mTOR signalling, inhibits colitis in the gnotobiotic IL-10-/- murine model of 

infection (Sun, Threadgill, & Jobin 2011).  The inhibition of mTORC1, contrary to the LPS 

reports, decreases NF-κB activation. However, it is unlikely that it is this effect which 
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reduces pathology as NF-κB inhibition alone does not ameliorate disease (Lippert et al. 

2009). Rapamycin inhibits production of IL-17 and IL-1β in this model which is associated 

with a decrease in neutrophil infiltration. IL-17 is a potent chemoattractant for neutrophils 

therefore IL-17 levels may be responsible for the observed reduction in neutrophil 

infiltration. Interestingly, the source of IL-17 in this model is not CD4+ T-cells as depletion of 

these cells had no effect on pathology. Other potential sources of IL-17 in the LP include γδ 

T cells, NK cells and LTi cells.   

1.5 Adaptive Immune Response to Gastrointestinal Pathogens 

A critical role for adaptive immunity in limiting C. jejuni infection in humans is 

demonstrated by the prolonged infection and increase in bacteraemia seen in 

immunocompromised individuals (Fernandez-Cruz et al. 2010). Both humoural and cellular 

immunity has been implicated in bacterial clearance and subsequent protection from re-

infection (Janssen et al. 2008). 

Dimeric secretory IgA (sIgA) cross the IEC monolayer and directly interact with bacteria in 

the GI lumen. sIgA is abundant in breast milk and is passed to infants during feeding, 

conferring  protection against microbes including C. jejuni (Ruiz-Palacios et al. 1990). 

Hypoagammaglobulinemic patients, who lack antibodies, suffer from prolonged and often 

systemic campylobacteriosis suggesting a critical role for antibodies in limiting infection 

(van den Bruele et al. 2010). Interestingly, IgM but not IgG antibody transfer reportedly 

clears infection in these patients, implying a role for IgM in clearance of C. jejuni (Borleffs et 

al. 1993).  

In addition to a correlation with fecal IgA, a human volunteer study highlighted a significant 

association between protection from C. jejuni-mediated pathology during re-infection and 

IFNγ levels (Tribble et al. 2010). The susceptibility of HIV patients to systemic C. jejuni 

infection also implicates cellular-mediated immunity in bacterial clearance during infection 

(Fernandez-Cruz et al. 2010).    

APCs present antigen on MHC class II which together bind to the T-cell receptor (TCR) 

complex on CD4+ T cells. In the presence of co-stimulatory molecules naïve CD4+ T cells 

differentiate into T helper effector cells upon TCR ligation. The T cell effector phenotype 

generated is dependent on the cytokine milieu in the local environment, primarily derived 

from activated APCs. T helper (Th) 1 cells broadly activate professional phagocytes by 

producing IFNγ, increasing their phagocytic capability and bactericidal activity; in contrast, 
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Th2 cells secrete IL-4 which is necessary for B-cell activation and Ig-class switching. In 

addition to the conventional Th1/Th2 paradigm, the recently discovered Th17 cells are 

associated with immune responses to pathogenic bacteria and also autoimmunity 

(Harrington et al. 2005). The production of IL-17 by Th17 cells recruits neutrophils to the 

site of inflammation. In addition to these T helper subsets there are multiple subsets of 

suppressor T cells that can either be generated in the thymus (regulatory T cells – Tregs) or 

induced in the periphery (inducible (i)Tregs). Regulatory T cells play an important role in 

limiting inflammation-associated damage during infection.      

In vitro assays with C. jejuni-stimulated human DCs show the potential of these cells to 

expand both Th1 and Th17 memory cells as well a unique IFNγ+ IL-17+ double-positive T cell 

subset (Edwards et al. 2010). Murine DCs also show the potential for C. jejuni-stimulated 

cells to differentiate naïve CD4+ T cell into Th1 effector cells (Rathinam, Hoag, & Mansfield 

2008). In a gnotobiotic IL-10-/- murine model IL-17 production in the mucosa was associated 

with colitis, although this was also not produced by CD4+ T cells (Sun, Threadgill, & Jobin 

2011). During infection, IFNγ likely aids the clearance of C. jejuni however as seen in IBD 

overt activation of cellular immunity may contribute to the severity of inflammation. The 

contribution of elevated IFNγ levels driven by prior exposure to C. jejuni to clearing bacteria 

more rapidly upon re-infection is a likely explanation for the observed association between 

IFNγ levels and protection (Tribble et al. 2010). 

Multiple bacterial pathogens have been shown to manipulate T cell polarisation in order to 

evade the host immune response. H. pylori promote Treg skewing via induction of DC IL-10 

and TGF-β (Kao et al. 2010). One hypothesis is that C. jejuni actively inhibits cellular 

mediated immunity in chickens resulting in impaired heterophil chemotaxis thus promoting 

colonisation (Meade et al. 2009). Current understanding of chicken mucosal T-cell 

responses remains limited although systemic spread of C. jejuni triggers a T-cell response in 

the liver (Jennings et al. 2011; Meade et al. 2009). In contrast to the human mucosal 

response to C. jejuni, chickens produce limited IL-6 and IL-1β upon colonisation (Meade et 

al. 2009; Shaughnessy et al. 2009); this may limit the activation of T-cells in the chicken 

mucosa which subsequently may limit heterophil influx.    
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Figure 1-6: Model for C. jejuni pathogenesis in the human intestine 

C. jejuni motility is critical to traverse the thick mucus lining of the epithelium. C. jejuni 

invade IECs leading to s IL-8 production and barrier disruption. C. jejuni may also invade the 

LP via M-cells. DCs phagocytose C. jejuni in the LP and trigger T cell differentiation. 

Cytokines and chemokines attract and activate innate professional phagocytes such as 

neutrophils and mononuclear cells to the site of infection. Professional phagocytes clear 

infection but this may come at a cost of pathologic inflammation in susceptible individuals.   

1.5.1 Vaccine Development 

The high socioeconomic cost of campylobacteriosis means significant efforts are being 

made to develop vaccines against infection primarily in chickens, but also in humans. The 

finding that chicks up to the age of 3 weeks are protected from C. jejuni colonisation by 

maternal IgG antibodies suggest a protective humoural response can be induced in 

chickens (Sahin et al. 2003). Epidemiological studies suggest the ability of humans to mount 

a protective immune response to C. jejuni-mediated pathology but not colonisation, 

suggesting a human vaccine could limit disease. A human volunteer study showed short-

term veterans (<50 days since initial C. jejuni challenge) were protected from pathology and 
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partially to colonisation when re-infected with the same C. jejuni strain, observed by lower 

excretion levels (Tribble et al. 2010). Approximately half of long-term veterans (1 year since 

initial C. jejuni challenge) were protected from pathology when re-infected. This suggests 

minimal length of protection of C. jejuni adaptive immune responses, and therefore 

repeated exposure in developing countries most likely boosts immune responses in adults.  

Studies to date have looked at multiple methods of vaccination in multiple species 

(Jagusztyn-Krynicka et al. 2009).  A commercially available inactivated Campylobacter 

whole-cell vaccine against Campylobacter fetus and Campylobacter jejuni (CampyVax) is 

available for protection against Campylobacter-mediated abortion and diarrhoea in sheep. 

A similar vaccine was used for a Phase III human vaccine trial started after a successful 

Phase II trial performed in 2002 however results have not been released from the 

company, Antex. Whole-cell vaccines of C. jejuni may be considered risky due to the 

association of C. jejuni with post-infectious neuropathies, therefore other vaccination 

strategies are being researched but are in early stages of design. Subunit vaccines based on 

flagellin, flagellin-exported proteins, and CPS-conjugate vaccines are currently being 

researched.  

  



50 
 

1.6 Project Aims & Hypotheses 

In the present study we wished to test the hypothesis that C. jejuni modulates host innate 

immune responses via glycosylated surface determinants which may favour either pro- or 

anti-inflammatory responses 

The specific aims of the project were: 

1. To investigate the role of the C. jejuni capsule, N-linked glycosylation 

system, and O-link glycosylated flagellin proteins in the activation of DC 

responses. 

2. To identify potential host innate immune receptors that may be involved in 

recognition of C. jejuni and modulation of subsequent immune outcome. 

3. To determine whether differences in C. jejuni LOS structures aid in defining 

the livestock and environmental phylogenetic clades, and whether LOS 

structural differences alter innate immune responses.  
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2.1 Bacterial Culture 

2.1.1 Campylobacter jejuni Strains 

The hyper-motile strain 11168H is a variant of NCTC 11168 wild-type (WT) C. jejuni, a strain 

that was originally isolated from a diarrheic patient by Martin Skirrow in 1977 (Karlyshev et 

al. 2002). 81-176 is a strain isolated from a milk-borne outbreak in the USA (Korlath et al. 

1985). Isogenic mutant bacteria were the kind gift of Professor Brendan Wren (LSTMH). 

Isogenic mutants were constructed by inserting a kanamycin resistance cassette into the 

gene of interest and introducing the construct into the chromosome by double 

homologous recombination, leading to a disruption of the gene. The isogenic mutant 

strains utilised in this study are listed in Table 2-1.   

Gene  Phenotype Reference 

∆flaA Lacks FlaA flagellin protein, one of two structural 
proteins constituting the flagella. Aflagellate 
bacteria; secretion positive. 

(Wassenaar et al. 1994) 

∆rpoN Disruption of the alternative sigma factor σ54 
(RpoN). Aflagellate bacteria; secretion negative. 

(Jagannathan et al. 2001)  

∆pglB Lacks the conserved N-linked glycosylation 
system thus denuding periplasmic and outer 
membrane proteins  

(Young et al. 2002)  

∆kpsM Capsular polysaccharide (CPS) negative  (Karlyshev et al. 2001)  

ΔCj1316 Flagellin monomers modified with only 
pse5Ac7Ac  but not pse5Ac7Am (or further 
derivatives) 

(Guerry et al. 2006)  

∆waaF Lacks a LOS heptosyltransferase truncating the 
OS to just one heptose residue proximal to the 
KDO residue 

(Oldfield et al. 2002)  

Table 2-1 C. jejuni Isogenic Mutants 

2.1.2 C. jejuni Culture 

C. jejuni was routinely cultured on 7% blood agar (Oxoid, Basingstoke, Hampshire, UK) 

under micro-aerobic [Variable Atmosphere Incubator (VAIN; Don Whitley Scientfific, 

Shipley, UK); 85% N2, 10% CO2, and 5% O2] conditions at 37oC. Alternatively, C. jejuni was 

grown in 2.5L gas jars (Oxoid) using micro-aerobic generating sachets, CampyGen (Oxoid) in 

a 37oC incubator.  

2.1.2.1 Growth on Blood Agar Plates 

Agar was prepared by dissolving 18.5g Columbia blood agar (BA) base (Oxoid) in Milli-Q 

0.22µm-filtered water (Millipore, London, UK) made up to 500mL and subsequently 

sterilising by autoclaving at 121oC for 15mins. 35mL of pre-warmed (to 37oC) defibrinated 
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horse blood (Oxoid) and one vial of Campylobacter selective supplement (a cocktail of 

vancomycin, trimethoprim, and polymyxin B; Oxoid) was added to 500mL Columbia blood 

agar base prior to plate (Fisher Scientific, Leicestershire, UK) preparation. For growth of 

isogenic mutant strains, 50µg/mL kanamycin (Sigma, Gillingham, UK) was also included. 

Frozen bacterial stocks were used as inoculums; cultures were passaged bi-weekly for up to 

4 weeks (stock plates). To obtain bacterial cultures in log phase growth for experiments, 

fresh BA plates were inoculated with C. jejuni from the stock plates and grown for 24h prior 

to experimentation. C. jejuni were subsequently resuspended in phosphate buffered saline 

(PBS; Invitrogen, Paisley, UK) and adjusted to the correct colony forming units (CFU)/mL 

using optical density (OD) measurements at 600nm. 

2.1.2.2 Growth in Brucella Broth 

Large scale preparation of C. jejuni (for lipooligosaccharide (LOS) isolation) was achieved by 

growing C. jejuni in Brucella broth. 28g BBL™ Brucella broth (Becton Dickinson (BD), Oxford, 

UK) was dissolved in 1L Milli-Q water and autoclave sterilised. Starter cultures were grown 

overnight by inoculating 3mL Brucella broth with a streak of C. jejuni from a fresh culture 

plate (<24hrs old) under micro-aerobic conditions with shaking at 200rpm at 37oC. Starter 

cultures were used to inoculate 500mL cultures which were subsequently grown to 

stationary phase under micro-aerobic conditions, at 37oC for 24-48h.   

2.1.3 Bacterial Quantification 

Bacterial cultures were resuspended in PBS and quantified in cuvettes (10mm path length; 

Fisher Scientific) using a spectrophotometer (Jenway 6300 Spectrophotometer; Jenway, 

Essex, UK) at 600nm. The OD600 was determined for individual bacterial suspensions.  

2.1.3.1 CFU count 

CFU counts were performed to determine the absolute number of bacteria. 10-fold serial 

dilutions of bacterial suspensions were performed in PBS. 10µL aliquots of each dilution 

were spotted in duplicate onto BA agar plates with up to 12 spots per plate. Biological 

replicates were also performed for each serial dilution. Colonies were counted for the 

lowest two serial dilutions with colonies present from both plating replicates and biological 

replicates, which were then used to calculate CFU counts.  For both WT and isogenic 

mutant strains an optical density (OD) reading of 1 at 600nm equalled 3 x 109 colony 

forming units (CFU). 
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2.1.4 Preparation of Frozen Bacterial Stocks 

Using a sterile 10µL plastic loop, a streak of C. jejuni (grown on BA plates for 24h) was used 

to inoculate a microbank vial (Pro-lab, Neston, Cheshire, UK) and subsequently stored at -

80oC. 

2.1.5 FITC labelling of C. jejuni 

A fresh saturated solution of Fluorescein isothiocyanate (FITC; Sigma) dissolved in sterile 

PBS was filter sterilised (0.22µm). Resuspended C. jejuni (OD 1) was mixed 1:1 with the 

saturated FITC solution. The mix was incubated in the dark at 37oC for 1h with gentle 

agitation. After incubation bacteria were pelleted by centrifugation at 10,000g for 2mins. 

The supernatant was discarded and the bacterial pellet resuspended in fresh PBS. The wash 

step was repeated three times before resuspending the pellet in PBS to a desired OD for 

co-culture studies.   

2.2 C. jejuni gene analysis  

2.2.1 Isolation of Bacterial Genomic DNA 

Bacteria grown overnight were harvested into 1mL PBS then pelleted at 10,000g for 2mins. 

Supernatant was decanted and the pellet was resuspended in 467µL TE buffer (10mM TRIS 

pH 7.6, 1mM EDTA) by repeated pipetting. 30µL of 10% sodium dodecyl sulphate (SDS) and 

3µL of 20mg/mL proteinase K (Sigma) was added prior to incubation for 1h at 37oC to allow 

bacterial lysis and protein digestion. An equal volume of Phenol:Chloroform (Sigma) was 

added and the suspension mixed gently to avoid shearing the genomic DNA. The mixture 

was spun at 10,000g for 10mins and the upper aqueous phase transferred to a fresh 1.5mL 

eppendorf. An equal volume of Phenol:Chloroform was added and the suspension gently 

mixed prior to centrifugation at 10,000g for 10mins. 1/10 volume of 3M sodium acetate 

(pH 5.2) was added to the collected aqueous layer followed by addition of 6/10 volume of 

isopropanol to precipitate the DNA. DNA was pelleted at 10,000g for 5mins and 

resuspended in the appropriate volume of water. DNA was quantified by NanoDrop 

(Thermo Scientific, Wilmington, USA). DNA was stored at -20oC until required. 

2.2.2 PCR analysis of gene content 

To confirm the presence of specific genes in different C. jejuni strains, PCR analysis was 

performed utilising gene specific primers. Reaction mixtures constituted: 10µL of Biomix 

Red PCR master mix (containing 1.5mM MgCL2, 200µM dNTPs, and Taq polymerase; 

Bioline, London, UK), 2pmol of both forward and reverse primers (Eurofins MWG Operon, 

Ebersberg, Germany), and 100ng bacterial genomic DNA template. Reactions were made to 
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20µL in volume with MilliQ water. Primers utilised in this study are listed in Table 2. For 

multiple reactions, master mixes were prepared to reduce intra-experimental variation. 

Reaction contents were vortexed briefly then centrifuged. PCR amplification was 

performed in a thermal cycler (Techne TC-512, Staffordshire, UK) utilising the following 

cycling conditions: 

Initial denaturation: 95oC for 5min - 1 cycle 

Denaturation: 95oC for 1 min  

Annealing: 55oC for 30sec              30 cycles 

Extension: 72oC for 90sec 

Final extension: 72oC for 10min – 1 cycle 

PCR products were separated by agarose gel electrophoresis. 1g agarose (Sigma) was 

dissolved in 1 x Tris Borate EDTA (TBE) buffer (Sigma) by heating in the microwave. Once 

cooled to ~50oC 1/10,000 Gel Red (Sigma) was added to the solution. The agarose was 

poured into a gel caster and allowed to set. Gels were placed in a gel electrophoresis tank 

containing 1 x TBE buffer (Sigma). Samples were separated at 100V for ~30mins. Bands 

were visualised using a UV imager. 

   Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) Product size 
(bp) 

lgtF (Cj1135) 
set 1  

ACTTAACAATGAAAGTAGCGAT
AATACCCTAA  

GCCACCAACCACATGCCTTT
ATCC  

290 

lgtF (Cj1135) 
set 2 

ACTTAACAATGAAAGTAGCGAT
AATACCCTAA  

GCCAAATGTGTTTTAAAGGG
CAAGGA  

854 

lgtF (Cj1135) 
set 3 

CCATCAAGATTGGCTTGGTTTT
GG  

ATTGTGCATAAAGCTTTGCT
ATGATAAAACCTC  

518 

NeuB1 
(Cj1140) 

GCAGGnGCTAAGATnATAAAnC
AnCAAAC 

TAATnCTnACTACnCTnGCAA
AnGCAAAATCAAT 

748 

orf 8ab*  
  

ATTATAGCCATTTGCTCACTTTG AAAGCACCCTTAGTCGTACC
TG 

755 

orf 7ab*  ACTACACTTTAAAACATTTAATC
CAAAATCA 

CCATAAGCCTCACTAGAAGG
TATGAGTATA 

579 

orf  8c* 
(Cj1140) 

CCTTTGATAATCCCTGAAATAG
GT 

TCCTTTGCACTTATACCACCT
T 

910 

orf  7c* 
(Cj1139) 

TTGAAGATAGATATTTTGTGGG
TAAA 

CTTTAAGTAGTGTTTTATGTC
ACTTGG 

745 

SOAT  CCTCATTATGCAAAAGTTGGAA
GGTATTG 

ATCAGCAAAATGATATTTCC
ACCATTGAAT 

424 

htrB* 
(Cj1133) 

GTTACTTTTATGCCTGAGTGTAT
CTTGCA 

CGCTTTCGTTTTCTACACAGT
CTTGATC 

546 

Table 2-2 PCR primers used to study genetic composition of C. jejuni strains 

n = G, C, A, or T                  * denotes primer pairs where annealing temperature was 52oC 
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2.3 Mammalian cell Culture 

2.3.1 Heat-inactivation of Foetal Calf Serum 

Foetal calf serum (FCS; Invitrogen, Paisley, UK) was defrosted overnight at 4oC. Heat 

inactivation (HI) was achieved by incubating FCS at 55oC for 30mins in a water bath in order 

to inactivate heat-labile complement proteins present in the serum. FCS was aliquotted and 

stored at -20oC.  

2.3.2 Cell-lines  

2.3.2.1 THP-1 cell line 

The non-adherent human acute monocytic leukaemia cell line THP-1 was cultured in RPMI 

1640 medium (Invitrogen) containing 2mM L-glutamine supplemented with 10% HI FCS, 

100U/mL penicillin and 100mg/mL streptomycin (Invitrogen). This media is referred to as 

complete RPMI media hereafter. Cells were passaged bi-weekly and maintained at 1 x 105 – 

1 x 106 cells/mL in T75 culture flasks. Cells were stimulated with 10ng/mL phorbol myristate 

acetate (PMA; Sigma, Poole) for 18h to differentiate the cells from a pro-monocytic to a 

monocyte/macrophage phenotype (Daigneault et al. 2010). PMA-stimulation resulted in 

the majority of cells becoming adherent.  

2.3.2.2 HEK/TLR cell lines  

The semi-adherent Human Embryonic Kidney (HEK) cell-line stably transfected with human 

TLR4/CD14/MD2 and a inducible secreted embryonic alkaline phosphatase (SEAP) reporter 

gene (HEK-blueTM hTLR4; InvivoGen, Nottingham, UK) were cultured in high glucose 

Dulbecco’s Modified Eagle Medium (DMEM; Invitrogen) containing 2mM L-glutamine 

supplemented with 10% HI FCS, penicillin/streptomycin and 100µg/mL Normicin 

(InvivoGen). This media is referred to as complete DMEM media hereafter. Cells were 

grown to 80% confluency, and passaged on average bi-weekly. Cells were used up to 

passage 15. 

2.3.2.3 Siglec-CHO cell-lines 

The adherent Chinese Hamster Ovary (CHO) cell-line either non-transfected or transfected 

with human Siglec-10 or Siglec-7 were the kind gift of Prof. Paul Crocker (University of 

Dundee, UK). Cells were cultured in F12 Ham media containing 2mM L-glutamine 

supplemented with 10% HI FCS, penicillin/streptomycin. Cells were grown to 80% 

confluency and passaged bi-weekly. Cells were washed in sterile PBS before addition of 

2mM EDTA in PBS. Cells were incubated at 37oC for 5mins to detach the cells. On addition 
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of complete media cells were pelleted at 1600rpm for 7mins. Cells were resuspended in 

complete media and cultured in T75 flasks. 

2.3.3 Counting viable cells 

10µL of cell suspensions was mixed 1:1 with 0.4% Trypan blue (Sigma, Poole) for 1min. 

10µL of this mixture was placed onto a haemocytometer counting chamber (Hawksley, 

Sussex, UK). Live cells (clear) were counted (40X magnification) with a light microscope 

(Phase Contrast 2, Nikon). The viable cell count was calculated as follows: 

Cell number within a 25 field box x dilution factor = total cell number x 104/mL 

A minimum of four 25 box fields were counted. 

2.3.4 Freezing cells 

Cells were pelleted (1600rpm, 7mins) and resuspended at ~1 x106/mL in 90% FCS 

containing 10% dimethyl sulphoxide (DMSO; Sigma). 1mL aliquots were made in Nunc 

cryovials (Fisher Scientific) and slowly frozen in a Nalgene Mr. Frosty (Sigma) containing 

isopropanol at -80oC. For long term storage cells were stored in liquid nitrogen. 

2.4 Primary Cell culture 

2.4.1 Mice 

A colony of WT C57BL/6 mice were kept at ICH Western labs animal facility. MyD88-/- , TRIF-

/-, single and double knock-out mice were the kind gift of Dr. Caetano Reis e Sousa (Cancer 

Research UK). IPAF-/-, ASC-/-, NOD2-/-, and NALP3-/- knock-out mice were the kind gift of Dr. 

Claire Bryant (University of Cambridge). 

2.4.2 Generation of Murine Bone-Marrow Derived Dendritic Cells (BMDCs) 

The muscle from femurs and tibias of 6-12wk old C57BL/6 mice were removed by scalpel, 

and bones sterilised in 70% ethanol. The bone marrow was flushed out with sterile PBS 

containing 2% FCS and 10μg/mL gentamicin (Invitrogen). Bone marrow was resuspended by 

gentle pipetting, and pelleted by centrifugation at 1600rpm for 7mins. Red blood cells were 

lysed in Red Blood Cell Lysis Buffer (Sigma) for 5mins, pelleted and washed twice in PBS. 

Cells were resuspended and plated at 0.5 x 106 cells/mL in Iscove’s Modified Dulbecco’s 

Medium (IMDM; Invitrogen) containing 10% HI FCS, penicillin/streptomycin, 2mM L-

glutamine, 50μM β-Mercaptoethanol (Invitrogen), 10μg/mL gentamicin, (termed complete 

media) with 20ng/mL murine GM-CSF (Peprotech, London, UK, or from Invitrogen). Cells 

were seeded at ~1 x 105 cells/mL in 6-well plates. On day 3 or 4, non-adherent cells were 
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collected, spun down and resuspended in fresh IMDM complete media containing GM-CSF. 

Fresh media was added when necessary on day 6. Cells were used on days 7 or 8. BMDCs 

were ~80% positive for CD11c as assessed by flow cytometry from two independent 

experiments. 

2.4.3 Murine Naïve T cell Isolation 

Spleens were removed from 6-12 wk old C57BL/6 mice. Single cells suspensions were 

achieved by pushing spleens through nylon 70µm cell strainer (BD Biosciences, Oxford, UK) 

with the plunger of a 5mL syringe with PBS. Splenocytes were pelleted by centrifugation at 

1600rpm, 7mins. Red blood cells were lysed by resuspending the cell pellet in 1mL of Red 

Blood Cell Lysis Buffer and incubating at room temperature (RT) for 5mins. Splenocytes 

were subsequently washed twice in PBS. CD3+ CD4+ CD62L+ CD44low Naïve CD4+ T cells were 

isolated using a negative selection MagCellect Mouse Naïve CD4+ T cell Isolation kit (R&D 

systems, Abingdon, UK) according to manufacturer’s protocols. Typically 1 x 108 

splenocytes were extracted from one spleen. Splenocytes were resuspended in chilled 1 x 

MagCellect Buffer at a density of 2 x 108/mL and transferred to a 5mL sterile polystyrene 

tube. 200µL of MagCellect Mouse Naïve CD4+ T Cell Biotinylated Antibody Cocktail was 

added per mL and gently mixed by pipetting and incubated at 4oC for 15mins. 250µL of 

MagCellect Streptavidin Ferrofluid was added to the suspension per mL, mixed gently by 

pipetting, and incubated at 4oC for 15mins. The suspension was subsequently adjusted to a 

total of 3mL volume with 1 x MagCellect buffer and mixed gently by pipetting. The 

suspension was placed in an EasySep magnet (Stemcell Technologies, Grenoble, France) for 

6mins at RT to allow the magnetically labelled cells to migrate to the magnet leaving the 

naïve T cells in suspension. Naïve T cells were collected by inverting the tube whilst still in 

the magnet and collecting the suspension into a fresh tube. Naïve T cells were pelleted and 

washed twice in PBS. Naïve T cells were used immediately for subsequent experimentation. 

Cells were >95% CD3+ CD4+ as assessed by flow cytometry from two independent 

experiments. 

2.4.4 Human Peripheral Blood Monocyte Isolation 

50 – 100mL blood was obtained from consented healthy adults at the Institute of Child 

Health and collected in tubes containing heparin. Blood was mixed 1:1 with RPMI then 

carefully layered onto 2/3 volume lymphoprep without disrupting the interface (Axis Shield, 

Uxbridge, UK). Peripheral blood mononuclear cells (PBMCs) were separated by density 

centrifugation at 2,200rpm for 25mins, with acceleration set at grade 4 and the brake off. 

PBMCs were carefully collected from the interface of the lymphoprep through the upper 
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media layer using a sterile Pasteur pipette. PBMCs were pelleted at 1,600rpm for 7mins, 

washed in RPMI and re-pelleted. Monocytes were extracted by CD14+ magnetic bead 

isolation (Miltenyi Biotec, Surrey, UK). PBMCs were carefully resuspended in 80µL MACS 

buffer (pre-chilled PBS containing 2mM EDTA, 1% FCS) per 107 cells. 20µL of magnetically 

labelled anti-CD14 beads were added per 107 cells and mixed gently prior to incubation at 

4oC for 20mins. 10mL MACS buffer was added to the PBMCs and mixed before pelleting. 

PBMCs were resuspended in 500µL MACS buffer. An LS MACS column (Miltenyi Biotec) was 

placed in a MACS magnet (Miltenyi Biotec) and primed by passing 3mL of MACS buffer 

without collection. PBMCs were passed through the column which was subsequently 

washed three times with 3mL MACS buffer. The column was removed from the magnetic 

field and the CD14+ eluted from the column by passing 5mL MACS buffer through it using 

the sterile plunger provided. CD14+ cells were washed in RPMI and pelleted, and were 

ready for further experimentation. Cells purified were >95% positive for CD14 as assessed 

by flow cytometry from two independent experiments.  

2.4.5 Generation of Human Monocyte-derived Dendritic Cells 

Isolated CD14+ monocytes were cultured in complete RPMI containing 50ng/mL 

recombinant human IL-4 and 100ng/mL GM-CSF (R&D systems) for 5-7 days at a density of 

2.5 x 105 cells/mL in 6-well plates. DCs were harvested and used immediately for further 

experimentation.  Cells were >95% positive for CD11c as assessed by flow cytometry from 

two independent experiments. 

2.5 Co-culture experiments 

2.5.1 BMDC Co-cultures 

BMDCs were seeded at 1 x 106/mL in RPMI containing 10% HI FCS in poly-propylene tubes 

to limit cell adhesion upon activation unless otherwise stated. Cells were treated with C. 

jejuni multiplicity of infection (MOI) 100, PBS alone, or 1μg/mL E. coli 0111:B4 LPS (Sigma), 

all prepared in 100µL PBS. Cells were incubated for 24h at 37oC, and pelleted by 

centrifugation at 1600rpm for 7mins. Supernatants were collected and stored at -80oC for 

cytokine analyses, cells were used immediately for surface marker analyses.  

2.5.2 Cytokine Secretion 

Cytokine levels were assessed using Ready-SET-Go! Enzyme-linked immunosorbent assay 

(ELISA) (eBioscience, Hatfield, UK) following manufacturer’s protocols. Plates were read at 
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450nm on a Multiskan EX Multiplate Photometer (Thermo Scientific). Data was analysed 

using Ascent software (London, UK). 

2.5.3 Surface Marker Analyses 

Cells were assessed for expression of maturation markers that increase upon DC 

maturation. Cells were washed in FACS wash buffer (PBS, 2% FCS, 0.02% sodium azide) 

then blocked with 1/100 anti-murine Fc Receptor antibody (BD Bioscience, Oxford, UK) for 

20mins on ice to eliminate binding of antibodies utilised to Fc receptors. Cells were then 

either stained for maturation markers (ebioscience; Table 0-3) or with an isotype control, 

or left unstained for 30mins on ice in staining buffer (FACS wash buffer containing 10% 

FCS). Cells were pelleted and washed with FACS wash buffer twice, and fixed in 4% 

paraformaldehyde (PFA) for 20mins. Cells were pelleted and resuspended in PBS. Surface 

marker expression was investigated by flow cytometry on a FACScan machine (BD 

Bioscience). Analysis was performed using FlowJo software (Tree Star, Oregon, USA).  

Antibody Fluorochrome Concentration 

Anti-CD40 PE 1/40 

Anti-CD80 PE-Cy5 1/200 

Anti-CD86 FITC 1/200 

Anti-MHC Class II FITC 1/200 

Table 2-3 Antibodies for BMDC maturation markers expression 

2.5.4 C. jejuni-mediated Activation of DC Signalling Pathways 

BMDCs were seeded at 1 x 106/well in 1mL media RPMI containing 2mM L-glutamine and 

0.05% FCS a day prior to infection; this was to reduce growth related mitogen-activated 

protein kinase (MAPK) signalling. BMDCs were stimulated with C. jejuni at an MOI 100 in 

100μL PBS. 100μL PBS was added to unstimulated controls. After inoculation, co-cultures 

were spun at 1500rpm for 5mins to promote association of C. jejuni/BMDCs. Co-cultures 

were incubated at 37oC for the duration of the infection. Cells were lysed in 50µL lysis 

buffer [1% Triton-X 100 (Sigma), 150mM sodium chloride, 50mM Tris pH 8.0, complete-

mini protease inhibitors (Roche, Sussex, UK), phosphatase inhibitor cocktail (Roche)]  at 

specified time points. After 5mins, lysates were collected and incubated on ice for a further 

30mins to ensure complete lysis. Lysates were spun at 13,000rpm for 2mins to pellet 

insoluble membranes and DNA, then aliquoted and stored at -80oC.  
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2.5.5 DC/T cell Co-cultures 

1 x 105/mL BMDCs were co-cultured with C. jejuni, media alone, or C. jejuni LOS (100ng/mL) 

for 24h in RPMI containing 2mM L-glutamine and 10% FCS. Cells were pelleted (1600rpm 

6mins) and supernatants were collected and passed through a 0.22µm filter. BMDCs were 

resuspended in complete RPMI containing 150µg/mL gentamicin and incubated at 37oC for 

2h to kill extracellular bacteria. BMDCs were subsequently pelleted and the supernatant 

discarded. BMDCs were washed once in PBS to remove residual dead bacteria then 

resuspended in the original sterile filtered supernatants. BMDCs were plated into 96-well 

plates at 1 x 104 BMDCs/well in 100µL. Naïve T cells were suspended at 1 x 106/mL in RPMI 

(10% FCS) containing 20µg/mL gentamicin, 10U/mL IL-2 (Peprotech), and anti-CD3/CD28 

Dynabeads (bead to cell ratio 1:1; Invitrogen). 1 x 105 Naïve T-cells (1:10 DC:T cell ratio) 

were added to the wells in 100µL making a final volume of 200µL per well, and 10µg/mL 

gentamicin. Media alone was added to BMDC only and naïve T cell only control wells. DC/T 

cell co-cultures were incubated for 4 days. Supernatants were collected and stored at -80oC 

prior to cytokine analyses.  

2.5.6 Human DC co-cultures 

1 x 105 monocyte-derived DCs were seeded into 96-well plates in 200µL RPMI containing 

2mM L-glutamine and 10% FCS. DCs were stimulated with WT C. jejuni and various isogenic 

mutants at an MOI 100. 24h post-infection supernatants were collected and stored at -80oC 

for further cytokine analysis. 

2.5.7 Siglec-CHO co-cultures 

Adherent Siglec-CHO cells were washed once in PBS then detached in PBS containing 2mM 

EDTA (Sigma) for 5mins at 37oC. Cells were pelleted at 1600rpm for 7mins and resuspended 

in F12 media containing 0.5% FCS at 1 x 106/mL cell concentration. 300µL of the 

resuspended cells was placed in a 1.5mL eppendorf and chilled to 4oC. Cells were co-

cultured with various FITC-labelled C. jejuni strains at an MOI 100 for 2h with gentle 

rotation on a MACSmix Tube Rotator (Miltenyi Biotec) at 4oC. Cells were collected and 

pelleted (1500rpm, 5mins, 4oC) in 5mL polystyrene FACS tubes. Cells were carefully washed 

once in 0.5mL chilled PBS re-pelleted and fixed in 4% PFA for 15mins. Cells were pelleted 

and resuspended in 100µL PBS alone. Adherence of C. jejuni strains was assessed by flow 

cytometry.     
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2.5.8 THP-1 co-cultures 

Adherent PMA-stimulated THP-1 cells were washed once in PBS then detached in 1mL 

trypsin (Invitrogen) for 5mins at 37oC. 200µL (1 x 105 cell/ml) of cell suspension in RPMI 

containing 2mM L-glutamine and 10% FCS was seeded into individual wells of a 96-well 

plate. Cells were allowed to adhere for 2h prior to stimulation with either various live 

strains of C. jejuni or isolated LOS. 20h after stimulation supernatants were collected and 

stored at -80oC for further analysis.   

2.5.9 Monocyte co-cultures 

1 x 105 CD14+ monocytes were seeded into 96-well plates in 200µL RPMI containing 10% 

FCS. Monocytes were stimulated with various concentrations of LOS purified from different 

C. jejuni strains. 20h post-infection supernatants were collected and stored at -80oC for 

further analysis. 

2.5.10 HEK-TLR4 co-cultures 

HEK-TLR4 SEAP cells (Invivogen) were detached by agitation and subsequently pelleted at 

1,600rpm for 7mins. Cells were counted and seeded into 96-well plates at 2.5 x 104 

cells/well in 200µL DMEM containing 2mM L-glutamine and 10% FCS. Cells were stimulated 

with purified C. jejuni LOSs’ for 18h. At the end of the co-culture 20µL of supernatant was 

added to 180µL of HEK-Blue Detection Reagent (180µL) in a fresh 96-well ELISA plate 

(Nunc). Plates were incubated at 37oC for 15min-2h until colour change from pink to purple 

was observed. Colour changes were read on an ELISA plate reader at 650nm.  

2.6 Gene expression assays 

2.6.1 Total RNA Isolation 

Cells were washed in PBS and either had RNA isolated immediately or stored at -80oC until 

required. Cell pellets were resuspended in 1mL of monophasic phenol and guanidine 

isothiocyanate based-TRIzol® in a 1.5mL eppendorf. 200µL chloroform (Sigma) was added 

to the tubes and vigorously vortexed for 10 seconds to ensure complete mixing. This 

mixture was allowed to stand for 3mins at RT before centrifugation (12000rpm, 15mins, 

4oC) to allow separation of the organic (lower) and aqueous (upper) phases. The aqueous 

phase (containing nucleic acids) was carefully extracted into a clean 1.5mL eppendorf 

without disturbing the denatured proteins found at the interface between the two layers. 

600µL of isopropanol was added to the nucleic acid solution, mixed well, and left overnight 

at -20oC to allow maximal precipitation of the total RNA. Tubes were then centrifuged 

(12000rpm, 10mins, 4oC) to pellet the precipitated RNA. Waste was removed and RNA 
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pellets were washed twice in 1mL 70% ethanol to remove salts. RNA pellets were re-spun 

and the 70% ethanol removed. Pellets were air-dried completely to remove remaining 

ethanol, then resuspended in 30µL 1 x ambion DNAse turbo buffer (Ambion, Paisley, UK) 

made in RNAse free water. 1µL of DNAse enzyme (Ambion) was added and the reaction 

was allowed to proceed at 37oC for 30mins to ensure complete removal of contaminating 

DNA. 3µL of DNAse Stop Solution (Ambion) was added and incubated at RT for 5mins with 

gentle flicking. Tubes were centrifuged (10,000g, 1.5mins) to separate the Stop Solution 

from the RNA. The aqueous layer containing the RNA was carefully removed into a fresh 

eppendorf. RNA was quantified using a NanoDrop machine. RNA was either used directly 

for conversion to cDNA or stored at -80oC for later use. 

2.6.2 Generating cDNA from total RNA 

In an RNAse free PCR tube, 1-5µg of total RNA was added with 1µL oligo dT (Bioline, 

London, UK), 1µL random hexamers (Bioline). The mixtures were heated at 65oC for 5mins 

in a thermal cycler and directly quenched on ice. For each sample  a master mix containing 

4µL 5 x Bioscript buffer (Bioline), 4µL dNTPs (Bioline), 1.5µL RNAse free water, 0.5µL 

Bioscript (Bioline) was made, and added directly to the PCR tubes containing the quenched 

total RNA solution. Contents were gently mixed, cDNA was synthesised using the following 

parameters in a PCR machine: 25oC for 10mins (primer extension), 42oC for 1 h (reverse 

transcription), 75oC for 10mins (enzyme inactivation). cDNA was stored at 4oC or -20oC for 

short- and long-term storage respectively. 

2.6.3 Real-time PCR 

To quantify the relative levels of transcripts for specific genes, real-time PCR was 

performed on cDNA from BMDCs from co-culture studies. Reaction master mixes contained 

10µL SYBR Green (Invitrogen), 5pmol forward primer, 5pmol reverse primer (Table 0-4), 

brought to 20µL total volume with MilliQ water. Master mix was pipetted into the bottom 

of the PCR tube (Qiagen). 2µL of cDNA was added to the master mix in the PCR tube. PCR 

was performed in duplicate using a Rotor-Gene 6000 Real-time PCR machine (Qiagen) 

utilising the following conditions: 

Initial denaturation: 95oC for 10min - 1 cycle 

Denaturation: 95oC for 15sec  

Annealing: 58oC for 30sec              40 cycles 

Extension: 72oC for 30sec 
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Melt Step: Increasing temperature by 1o each cycle from 70o-95o. 90sec wait after 

first step and a 5sec wait after subsequent steps. 

 

Lasers used: Green 470nm (excitation) 510nm (emission) Gain 10 

                       Yellow 530nm (excitation) 555nm (emission) Gain 5 

 

Data were analysed using Rotor-Gene 6000 Series Software 1.7. Relative levels of 

transcripts were determined using delta delta cycling threshold method (ΔΔct). ct 

levels were determined from duplicates of individual samples, and were expressed 

as a relative number to GAPDH transcript levels using the following equation: 

Δct = 2(GAPDH ct value – transcript of interest ct value) 

                     
Gene 

Forward Primer (5’-3’) Reverse Primer (5’-3’) 

IL-10 GGTTGCCAAGCCTTATCGGA 
 

ACCTGCTCCACTGCCTTGCT 
 

p35 CCTCAGTTTGGCCAGGGTC 
 

CAGGTTTCGGGACTGGCTAAG 
 

p40 GGAAGCACGGCAGCAGAATA 
 

AACTTGAGGGAGAAGTAGGAAT 
 

IL-6 GTTCTCTGGGAAATCGTGGA 
 

TGTACTCCAGGTAGCTATGG 
 

IL-1β CCAAAAGATGAAGGGCTGCT 
 

AGAAGGTGCTCATGTCCTCA 
 

GAPDH CCTGGAGAAACCTGCCAAGTATG 
 

AGAGTGGGAGTTGCTGTTGAA 
 

Table 2-4 Real-time PCR primers 

2.7 Intracellular Bacteria Counting 

2.7.1 Gentamicin Protection Assay 

BMDCs were seeded at 2 x 105/well in 24-well plates in a total volume of 1mL RPMI 

containing 2mM L-glutamine and 10% FCS. Cells were infected with C. jejuni at an MOI 100. 

Plates were spun at 1500rpm for 5mins to initiate bacterial/DC interactions. Co-cultures 

were incubated at 37oC for various time periods to allow internalisation of C. jejuni. 

Infection media was removed and cells washed twice with sterile PBS. Media was replaced 

with 1mL RPMI containing 150µg/mL gentamicin, and incubated at 37oC for 2h to kill 

extracellular bacteria. Media was removed and cells washed twice with sterile PBS. Cells 

were subsequently lysed in 0.5mL 0.1% Triton-X 100 (Sigma) in PBS for 5mins prior to 

undergoing 10-fold serial dilutions. CFU analysis was performed on BA plates. Plates were 
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incubated at 37oC in gas jars containing a CampyGen sachet (Oxoid) to generate a micro-

aerophillic atmosphere. Colonies were counted after 48h.  

2.8 Activation of host signalling pathways  

2.8.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) and Western Blot 

Analysis 

10% SDS-polyacrylamide gels were prepared on the day of use as follows: 

Resolving Gel:  
2.5mL R-Buffer (1.5M TRIS, 0.4% SDS, pH8.8) 
3.5 mL 30% Acrylamide  
4mL Milli-Q Water 
100µL 10% Ammonium Persulphate 
10µL Tetramethylethylenediamine (TEMED) 
 
Stacking Gel: 
1.2mL S-Buffer (0.5M TRIS, 0.4% SDS, pH 6.8) 
1.2mL 30% Acrylamide 
2.2mL Milli-Q Water 
120µL 10% Ammonium Persulphate 
10µL TEMED 
 
Resolving gel was poured first into a gel cast filling ¾ of the space. 200µL of Milli-Q water 

was placed onto this layer to reduce contact with the air during polymerisation. After 

polymerisation the water was removed and the Stacking gel was poured onto the resolving 

gel with the addition of 10-well combs. Gels were allowed to fully polymerise before the 

combs were removed.  

Lysates were mixed 1:1 ratio with 2x laemmli buffer [4% SDS (Sigma), 10% β-

mercaptoethanol (Sigma), 20% glycerol (Sigma), 0.004% bromophenol blue (Fisher 

Scientific), 0.125M Tris HCl, pH 6.8]. Samples were boiled at 95oC for 5mins. Samples were 

loaded and gels subjected to electrophoresis at 125V for 1.5 h in electrophoresis buffer 

(25mM Tris, 190mM glycine, 0.1% SDS). Gels were routinely run in a mini-protean 3 cell 

unit (Bio-Rad, Hertfordshire, UK). Proteins were transferred onto nitrocellulose membrane 

(GE Healthcare, Buckinghamshire, UK) by the wet transfer method. Transfers were 

conducted at 200mA for 60mins in transfer buffer (48mM Tris, 39mM glycine, 0.04% SDS, 

20% methanol). Membranes were blocked in 5% milk (Marvel, Premier Foods, 

Hertfordshire, UK) in Tris-buffered saline (TBS) with 0.1% Tween-20 (TBS/T) for 2h at RT 

with gentle agitation. Phospho-specific primary antibodies (all from Cell Signalling, MA, 

USA) were used at 1/1000 concentration or anti-IL-1β (1/250; Santa Cruz, Heidelberg, 
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Germany) in 5% milk in TBS/T (except P-ERK and P-p38 2% BSA in TBS/T). All primary 

antibodies were incubated at 4oC for 8h/overnight. Membranes were washed three times 

for 5mins in TBS/T. Secondary goat anti-rabbit conjugated to horseradish peroxidase 

(DAKO, Stockport, UK) was used at 1/1000 in TBS/T (except P-ERK and P-p38 3% BSA in 

TBS/T). Secondary antibodies were incubated for 2h at RT for P-ERK and P-p38, and 

overnight at 4oC for P-JNK and IκBα detection. Membranes were washed 3 times for 5mins 

in TBS/T. 1mL Enhanced chemiluminescence (ECL; GE Healthcare, Buckinghamshire) was 

prepared according to manufacturer’s protocol and added to the membranes for 2mins. 

Membranes were exposed to X-ray film (ECL hyperfilm; GE Healthcare) for various lengths 

of time and developed. To ensure equal loading of samples, membranes were stripped in 

stripping buffer (2% SDS, 0.8% β-mercaptoethanol, 0.0625M Tris pH 6.8) at 50oC in the 

fume-hood for 20mins, stripping buffer was discarded and this step repeated to ensure 

complete removal of bound antibodies. Membranes were re-blocked in 5% milk in TBS/T 

for 2h then re-probed with total ERK primary antibody (Cell Signalling).    

2.8.2 Analysis of NF-κB activation in BMDCs using an NF-κB reporter plasmid 

2.8.2.1 Lentivector Production 

Lentiviral vectors were produced in a HEK 293T packaging cell line. A combination of 3µg 

lentivector plasmid, 1.5µg Vesicular stomatitis virus glycoprotein G (VSV-G) plasmid (pMD-

G; (Naldini et al. 1996)) 1.5µg packaging plasmid (pCMVR8.91; (Naldini et al. 1996)) was 

made to 100µL in sterile water. 27µL Fugene 6 (Promega, Southampton, UK) was added to 

100µL OptiMEM media (Invitrogen). Fugene/OptiMEM was added to the DNA and mixed 

thoroughly by vortexing and incubated at RT for 15mins to allow complex formation. 

DNA/Fugene complexes were added to a 70% confluent T75 flask of HEK 293T cells in 

complete media. Media was collected and replaced daily for up to 5 days. Collected media 

containing lentivectors was placed on top of a 3mL sterile 20% sucrose cushion in a 38.5mL 

Ultra-ClearTM centrifuge tube and centrifuged at 25,000rpm for 2h (Beckman Coulter, High 

Wycombe, UK). Pelleted lentivectors were carefully resuspended in 300µL PBS by repeated 

pipetting, aliquoted, and stored at -80oC.   

2.8.2.2 Lentivector Titration by qPCR 

5 x 105 HEK 293T cells were transduced with 2µL lentiviral vectors in 24-well plates. 24h 

post-transduction cells were collected and genomic DNA extracted using DNeasy Blood & 

Tissue Kit following manufacturer’s protocol (Qiagen). A lentivector plasmid of known 

concentration was used to make the standard curve. A stock concentration of 1mg/mL 
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plasmid was diluted 2:175 in water to give a copy number of 109. From this stock a 10-fold 

serial dilution was made from 105-101 copies/µL. Master mixes were made as follows: 7.5 

pmol fwd primer GT 249: 5’ GAGTCCTGCGTCGAGAGAGC 3’, 7.5pmol rev primer GT 248: 

TGTGTGCCCGTCTGTTGTGT, 3.75pmol probe FAM-CAGTGGCGCCCGAACAGGGA-TAMRA, 

12.5µL QuantiTect PCR mix (Qiagen) made to 20µL with MilliQ water. 5µL of sample or 

standard was added to 20µL master mix in real-time PCR tubes. qPCR was performed as 

described in 0. Titres were calculated from the standard curve. 

2.8.2.3 Lentivector Transduction of NF-κB reporter plasmid 

On day 4 of differentiation, BMDCs were seeded at 1 x 105/well in 24-well plates in a total 

volume of 300µL of complete IMDM media containing 20ng/mL murine GM-CSF. Cells were 

transduced with lenti-viruses containing the NF-κB reporter plasmid that drives luciferase 

production depicted in Figure 2-1 the kind gift from Dr. David Escors (UCL) at an MOI 10. 

5µg/mL protamine sulphate (Sigma) was used in transduction mixtures to neutralise the 

negative charge of the plasma membrane and enhance transduction efficiencies. 6h post-

transduction, complete IMDM media containing GM-CSF was added to a total volume of 

1mL. Cells were grown for an additional 4 days. Media was replaced when necessary by 

removing the top 0.5mL and replacing it with fresh complete media containing GM-CSF.  

 

 

Figure 2-1: NF-κB inducible lenti-viral plasmid 

An NF-κB responsive element drives expression of luciferase protein from a minimal 

cytomegalovirus (CMV) promoter.   

2.8.2.4 NF-κB reporter Co-cultures 

1 x 105 transduced BMDCs in 100µL RPMI containing 10% FCS were stimulated with C. jejuni 

(MOI 100 or 10) or purified C. jejuni LOS (100ng/mL) for 6h in sterile white 96-well plates. 

AmpR 1464...2123

ColE1 origin 2221...2903

SV40 early promoter 3264...3460

IgK chain 7764...7815
NF-kB responsive prom 7763...7846

CMV promoter 7848...7928
Luciferase 7948...8658

SIN-NFkBprom-

luciferase
9323 bp
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Cells were equilibrated to RT before the addition of 100µL Bright-GloTM (Promega) reagent. 

Cells were incubated at RT for 2mins to allow for complete lysis before luciferase activity 

was measured in a luminometer (FLUOStar Optima, BMG Labtech, Aylesbury, UK).  

2.9 Lipooligosaccharide Structural Analysis 

2.9.1 Lipooligosaccharide (LOS) Isolation 

Bacterial pellets were resuspended in 5mL water in 50mL falcon tubes. Cultures were 

frozen at -80oC before being freeze dried. After complete freeze drying bacteria were 

resuspended in 30mL water and mixed 1:1 with 90% phenol (made fresh with water; 

Sigma). Bacterial/phenol mixtures were stirred at 68-70oC for 2h to ensure removal of the 

LOS from the outer membrane. Bacterial/phenol mixtures were dialysed with in 1KD cut-off 

Spectra/POR dialysis tubing (Spectrum Laboratories, California, US) for 3-4 days, water was 

replaced twice daily, at the end of the dialysis, the lack of phenol smell was indicative of its 

removal.  After dialysis supernatants were spun at 5000rpm for 20mins to remove cell 

precipitate. The clear supernatant was frozen at -80oC in 50mL falcons and freeze-dried. 

The freeze dried bacterial constituents’ were resuspended in 30mL 1mM TRIS-EDTA 

containing 60µg/mL DNAse (Sigma) and 30µg/mL RNAse (Sigma) and incubated at 37oC 

with shaking (100rpm) for 4h. 30µg/mL proteinase K (Sigma) was subsequently added and 

the mixture incubated overnight at 37oC with gentle shaking prior to O/N dialysis in 1KD 

cut-off tubing. The dialysed solution was spun at 5000rpm for 20mins to remove any 

residual precipitate. Supernatants were frozen at -80oC in 50mL falcons and freeze-dried. 

Freeze-dried material was resuspended in 10mL milliQ water and spun at 35,000rpm for 4h 

at 4oC to pellet the LOS. Pelleted LOS was resuspended in 5mL water and freeze-dried 

overnight. Purified LOS was quantified using a micro-balance and stored either in the 

lyophilised form at -20oC or re-suspended in milliQ water at 1mg/mL at -80oC.     

2.9.2 Silver Stain  

1µg/mL of purified LOS was run on pre-made 7-15% TRIS-glycine gradient gels (BioRad). 

Gels were fixed O/N at 4oC in methanol: acetic Acid: water mixture at a 2:1:11 ratio. Gels 

were washed twice in water for 5mins with shaking and then incubated for 10mins with 

1.4% periodic acid. Gels were washed four times in water for 10mins. Silver stain solution 

was prepared fresh: 5mL 20% silver nitrate (freshly made in water) was added dropwise to 

2.8mL 1M NaOH, 2.5mL concentrated NH4OH with swirling; final volume was made to 

150mL with water. Gels were stained for 10mins with silver stain solution and then washed 

three times in water for 20mins. Gels were developed in development solution: 10mg citric 
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acid, 100µL concentrated formaldehyde made to 200mL in water. Gels were developed to 

the desired strength of staining; development was stopped by incubating gels in 5% acetic 

acid for 30mins. Gels were washed twice in water for 20mins and photographed.    

2.9.3 O-deacylation of LOS 

Samples were O-deacylated prior to Matrix-assisted laser desorption/ionisation time of 

flight (MALDI-TOF) mass spectrometry (MS) analysis to aid acquisition of highly resolved 

peaks. ~300µg of LOS from each strain was placed in a 1.5mL eppendorf and 200µL of 

anhydrous hydrazine (Sigma) was added. The samples were incubated at 37oC in a water 

bath for 2h with intermittent vortexing. The solution was cooled to RT and the reaction 

stopped by the addition of 1mL of pre-cooled acetone (-20oC). The precipitated O-

deacylated samples were pelleted by centrifugation at 12,000g for 20mins. Supernatants 

were removed and the pellet washed in 1mL chilled acetone before re-pelleting at 12,000g 

for 20mins. Supernatants were removed and the pellet resuspended in 500µL of MilliQ 

water. Samples were frozen at -80oC before being lyophilised.  

2.9.4 Mass Spectrometry  

MS was performed in the linear mode on a Voyager-DE STR model TOF instrument 

equipped with a 337-nm nitrogen laser and delayed extraction by Dr. Constance John, 

UCSF, USA. Spectra were obtained in the negative-ion mode with an average of 500 pulses 

per spectrum. The acceleration voltage was −20 kV. External calibration of the mass 

spectrometer was performed using the average masses of the molecular ions of the 

peptides porcine renin substrate, bovine insulin, and oxidized insulin chain B (Sigma). 

During each acquisition period internal calibration was performed using LOS isolated from 

Neisseria menigitidis of known mass. Spectra were analysed using Data Explorer Software 

(Applied Biosystems). All spectra were smoothed at 39 points Gaussian Smooth before 

analysis.  

2.9.4.1 Intact LOS Sample Preparation 

Intact samples were resuspended in methanol: water (1:1) containing 5mM EDTA at 1-

2µg/mL concentration. Samples were de-salted to remove sodium ions using Dowex 

50WX8-200 cation-exchange beads (Sigma) on a piece of parafilm. The sample was mixed 

1:1 with 20mM dibasic ammonium citrate (Sigma) on a piece of parafilm and 0.5µL was 

placed onto the MS sample plate on top of a thin layer of matrix using a glass capillary 

pipette. The make the MS matrix, nitrocellulose transblot membrane (Bio-Rad) was 

dissolved in acetone:isopropanol (1:1) to a concentration of 15mg/mL; to this 2,4,6-
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trihydroxyacetophenone (THAP; Sigma) dissolved in methanol to 200mg/mL was added in a 

4:1 ratio. Small drops of this matrix (0.3-0.9µL) was deposited onto the MS sample plate 

and allowed to air dry before the intact sample was placed on top.  

2.9.4.2 O-deacylated Sample Preparation 

O-deacylated samples after desalting as described above then were mixed 1:1 in 2,5-

dihydroxybenzoic acid (DHB) matrix. The matrix was prepared by dissolving 10 mg DHB in 

acetone. Samples were spotted onto the MS plate using a glass capillary pipette and allow 

to air dry. 

2.10 Statistics 

Data for experiments of >5 repeats which showed normal distribution (parametric data) 

when plotted on a box and whisker plot were subjected to analysis by paired t-test. 

Experiments of <5 repeats where normal distribution of the data points was unknown 

Wilcoxon matched pairs test was used to analyse the data. For comparison of more than 

two groups in the same experiments Repeated Measures ANOVA was used for parametric 

data using the Tukey post test to compare all columns of data. For non-parametric data 

when comparing more than two groups in the same experiment Friedman test analysis was 

performed with Dunns post test to compare all columns of data. All statistical analysis was 

performed using GraphPad 5 software.     
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3.1 Background 

Upon recognition of microbial products APCs undergo a maturation process that allows 

them to trigger T cell immunity via the presentation of three activation signals:  antigen 

presentation on MHC class II; the upregulation of co-stimulatory receptors; and the 

secretion of cytokines. The collective impact of all these three signals plus local 

environmental factors together shape the type and extent of T-cell response(s) induced. 

Upon encounter, multiple microbe-host (MAMP/PRR) interactions come into play leading 

to APC activation. Evidence suggests that TLR engagement promote specific cellular 

functions; e.g. the engagement of TLR2 from various pathogens (Yersinia pestis and 

Candida albicans) preferentially induces IL-10 (Netea et al. 2004; Sing et al. 2002). 

However, other PRRs are also capable of inducing IL-10, often working synergistically to 

amplify responses (Gringhuis et al. 2007). It is a challenge to decipher whether the tailoring 

of specific innate responses are beneficial to the host and/or pathogen. For instance, the 

induction of IL-10 may be beneficial to the pathogen as it may aid colonisation by immune 

suppression as demonstrated with H. pylori infection (Kao et al. 2010; Panthel et al. 2003).  

PRRs bind to specific microbial components that are generally surface exposed. The 

availability of C. jejuni isogenic mutants has greatly aided in improving our understanding of 

host/pathogen interactions involved in both the in vitro and in vivo settings. Several surface 

structure mutations of C. jejuni have been characterised, interestingly many of these 

mutations have little impact on bacterial growth rate and viability (Dr. Nick Dorrell & 

Professor Brendan Wren, LSHTM, UK; personal communication). The capsule, N-linked 

glycosylation system, and the flagella have been implicated in the adherence and invasion 

of IECs (Bacon et al. 2001;Golden and Acheson 2002;Karlyshev et al. 2004). Additionally the 

N-linked glycosylation of C. jejuni proteins can modulate DC cytokine responses via 

interaction(s) with the PRR MGL (van Sorge et al. 2009). In this chapter we sought to 

identify the role of specific surface determinants, in particular the role of CPS, N-linked 

modifications and the O-linked flagella on DC activation. Murine bone-marrow derived 

dendritic cells (BMDCs) were used as an in vitro model for DC activation in response to C. 

jejuni. 

C. jejuni isogenic mutants employed in this study are listed in Table 2-1. A ∆kpsM isogenic 

mutant strain of C. jejuni 11168 lacks the capsule as determined by electron microscopy of 

alcian blue stained whole bacteria (Karlyshev, McCrossan, & Wren 2001). A ∆pglB isogenic 

mutant of C. jejuni 11168 lacks the conserved N-linked glycosylation, thus denuding 
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multiple periplasmic proteins and outer-membrane proteins (Young et al. 2002). A ∆flaA 

mutant of C. jejuni strain 81116 is non-motile and contains only truncated flagella bearing 

no FlaA structural filaments, this mutant has not been characterised in strain 11168 

(Wassenaar et al. 1994). Mutation of the flagellar transcription activator rpoN encoding the 

alternative sigma factor 54 results in aflagellated bacteria (Jagannathan, Constantinidou, & 

Penn 2001). Due to the elimination of transcription of multiple proteins involved in the 

flagellum hook structure the ∆rpoN is secretion negative in contrast to the ∆flaA mutant 

which is secretion positive (Konkel et al. 2004).   

C. jejuni strains potentially contain two separate biosynthesis pathways for the production 

of derivatives of pseudaminic acid (Pse) and legionaminic (Leg) acid residues which are 

subsequently attached to flagellin proteins either on serine or threonine residues (O-linked 

glycosylation). The Ptm and Pse pathways encode proteins necessary for the generation of 

Leg and Pse derivatives respectively. Although the pathways are distinct in their apparent 

specificities i.e. strains that encode the Pse pathway only contain Pse modifications, 

mutations in one pathway however alters the production of the alternative flagellin 

modification. For example, mutation of the Cj1324 gene (involved in the synthesis of Leg 

modifications) leads to a  lack of both Pse5Ac7Am as well as Leg5Am7Ac structures (and 

other legionaminic acid derivatives) (Howard et al. 2009). Mutations in genes involved in 

the Pse biosynthesis pathway lead to truncation of the flagella structure. This is due to the 

requirement of some but not all of the Pse-Ser/Thr modifications in filament 

polymerisation (Ewing, Andreishcheva, & Guerry 2009). Although complete ablation of the 

Pse pathway results in a non-motile phenotype; mutation of pseA (Cj1316) results in 

flagellin monomers (strain 81-176) with only pse5Ac7Ac present and not pse5Ac7Am (or 

further derivatives) (Guerry et al. 2006).    

3.2 The role of C. jejuni capsular polysaccharide, N-linked 

glycosylation system, and flagella in mediating BMDC responses 

Bacteria are readily phagocytosed by professional APCs such as DCs. Successful pathogens 

have evolved multiple mechanism(s) to evade host immunity including manipulating the 

process of phagocytosis. In a series of experiments the ability of BMDCs to phagocytose 

and subsequently kill WT C. jejuni was assessed by the standard gentamicin protection 

assay (Figure 3-1a and b respectively). C. jejuni were phagocytosed by BMDCs within 2h of 

co-culture (Figure 3-1a). The number of intracellular bacteria increased in a progressive  
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Figure 3-1: C. jejuni are phagocytosed and killed by murine bone-marrow derived 

dendritic cells  

(a) 2 x 105 BMDCs were infected with WT C. jejuni strain 11168H at an MOI 100 for the 

indicated times, treated for 2h with 150µg/mL gentamicin to kill extracellular bacteria then 

subsequently lysed in 0.1% triton-X. CFU counts were performed to enumerate intracellular 

bacteria numbers. (b) 2 x 105 BMDCs were infected for 2h with C. jejuni MOI 100, treated 

for 2h with 150µg/mL gentamicin then subsequently lysed (0h time-point) or incubated in 

media containing a lower concentration of gentamicin for the indicated times before lysis. 

Rate of survival was calculated and are given as a percentage of the bacterial numbers 

enumerated at the 0h time point. Values are expressed as mean ± standard error of the 

mean (SEM) from three independent experiments performed in duplicate. One-way 

ANOVA statistical analysis performed with Tukey post-test. No stars = not significant; * 

<0.05; ** <0.01; ***<0.001.  
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manner up to 6h post-infection, where a ~ ratio of 1 intracellular bacterium/DC was 

observed. The number of viable intracellular bacteria decreased from ~ 100,000 CFU at 6h 

to 1,000 CFU at 24h (Figure 3-1a). In contrast to the reduction in internal bacteria at 24h 

post-infection the CFU count in the supernatant increased by ~10-fold (data not shown). 

This data showed that BMDCs phagocytosed C. jejuni in a time-dependent manner, 

however this phagocytic capability decreased over extended time periods (p<0.05).  

The ability of BMDCs to kill intracellular C. jejuni was assessed (Figure 3-1b). The number of 

intracellular bacteria enumerated after 2h co-culture and subsequent killing of extracellular 

bacteria (Figure 3-1a 1st bar) was considered 100% (Figure 3-1b 1st bar). After a subsequent 

4h incubation a significant reduction (45%; p = 0.03) in viable intracellular bacterial 

numbers was observed. After 24h incubation no viable bacteria were recovered. Taken 

together, BMDCs phagocytosed and exerted bactericidal activity against C. jejuni. This 

signified C. jejuni was unable to replicate within this cell-type.   

 The ‘glycosylation’ moieties of microbe surface structures can engage and modulate the 

phagocytic process. We hypothesised that glycosylated surface determinants of C. jejuni 

may alter BMDC function by interfering with phagocytosis. To analyse whether three 

known glycosylated components of C. jejuni play a role in BMDC mediated phagocytosis, 

co-cultures with isogenic mutant strains lacking specific constituents were set-up for 4h 

and viable intracellular bacteria enumerated (Figure 3-2). No significant difference in 

phagocytosis of the capsule mutant, ∆kpsM (Figure 3-2a), N-linked glycosylation mutant, 

∆pglB (Figure 3-2b), or the flagellin mutant, ∆flaA (Figure 3-2c) was observed.  These 

experiments clearly showed that the glycosylation system alone or its modifications on the 

capsule and flagella did not affect bacterial uptake.  

Upon activation by MAMPs DCs upregulate the expression of co-stimulatory molecules 

(CD86, CD40, CD80) and MHC class II in order to engage T-cells leading to their 

differentiation and activation.  The contribution of C. jejuni glycosylation to modulate these 

maturation markers was assessed by flow cytometry 24h post-infection (Figure 3-3). 

Unstimulated BMDCs did not express CD40 (Figure 3-3a). Upon stimulation with WT or 

ΔkpsM C. jejuni a ~1.8 fold increase in CD40 MFI was observed (Figure 3-3b). In contrast, 

both the ΔpglB and ΔflaA mutants increased CD40 expression ~1.5 fold which was 

comparable to LPS-stimulation (positive control). The difference between the WT and ΔflaA 

strain was significant (p<0.05). Induction of CD80 was low, showing a ~1.3 fold increase for 

the WT strain and all the mutants tested. The WT strain induced MHC class II expression by  
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Figure 3-2: C. jejuni capsule, N-linked glycosylation system, and flagella do not alter 

phagocytosis rates 

2 x105 BMDCs were co-cultured for 4h with WT C. jejuni strain 11168H and various isogenic 

mutants at an MOI 100 and intracellular bacteria were enumerated by gentamicin 

protection assay 4h post-infection (a) WT and ∆kpsM strains (b) WT and ∆pglB strains (c) 

WT and ∆flaA strains. Values are expressed as means ±SEM from three independent 

experiments performed in duplicate. Paired t-test statistical analysis performed. No stars = 

not significant. 
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Figure 3-3: Stimulation of BMDCs with ΔflaA C. jejuni strain alters CD40 expression 

1 x 106 BMDCs were co-cultured for 24h with WT C. jejuni strain 11168H and various 

isogenic mutants at an MOI 100. The expression of maturation markers CD40, CD80, and 

MHC class II was analysed by flow cytometry. (a) Representative histograms for the 

maturation markers are shown. Unstimulated isotype control (dashed line); unstimulated 

stained control (solid grey); C. jejuni stimulated (black line) (b) Average data for fold 

induction of geometric mean fluorescence intensity (MFI) over basal expression on 

unstimulated cells. Data from at least 3 independent experiments. Data are means ± SEM. 

One-way ANOVA statistical analysis performed with Tukey post-test. * <0.05; no stars = not 

significant.  
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~1.5 fold over the unstimulated cells. The ΔkpsM mutant induced higher levels of MHC 

class II, at ~2 fold; however this difference was not statistically significant.  The ΔpglB and 

ΔflaA mutants showed comparable levels to that noted with the WT strain. This data 

showed that BMDCs upregulate multiple co-stimulatory markers and MHC class II in 

response to C. jejuni. The flagella directly impacted on the upregulation of CD40 whilst 

having little impact on other maturation markers.   

In addition to the upregulation of maturation markers, DCs secrete an array of both pro- 

and anti-inflammatory cytokines in response to stimuli. BMDCs were co-cultured with WT 

and isogenic mutants of C. jejuni and the level of cytokines secreted was assessed. WT C. 

jejuni induced both pro- and anti-inflammatory cytokines as measured 24h post-infection 

(Figure 3-4; Figure 3-5; Figure 3-6). IL-6 was markedly induced by C. jejuni at ~35000pg/mL 

(Figure 3-4b). High levels of TNF-α were also detected at ~5000pg/mL (Figure 3-4a).  

Interestingly, IL-1β levels (<500pg/mL) in comparison were low (Figure 3-4c). IL-12 family 

members, IL-12, IL-23, and IL-27 were modest at ~ 100pg/mL, 20pg/mL, and 100pg/mL 

respectively in response to infection (Figure 3-4d). Importantly, high levels of IL-10 at 

~2500pg/mL were detected (Figure 3-4e). E. coli LPS, a potent inducer of TLR4, was used as 

both a positive control for individual experiments and also for comparison in the levels of 

cytokines induced by C. jejuni. Interestingly, levels of particular cytokines induced by C. 

jejuni differed from that of LPS alone. LPS induced higher levels of IL-12 family cytokines, 

and significantly higher levels of IL-6 (p <0.05) (Figure 3-6). In contrast, WT C. jejuni induced 

significantly higher IL-1β (p <0.05) and IL-10 (p <0.05) than LPS alone. These observations 

revealed the cytokine milieu generated by BMDCs in response to C. jejuni.  Additionally, the 

cytokine profile differed considerably when compared to LPS-mediated response(s).  

To assess the contribution of particular surface components, isogenic mutants of C. jejuni 

were co-cultured with BMDCs and cytokines quantified. The capsule mutant, ∆kpsM, 

induced similar levels of TNF-α, IL-1β, and IL-10 to WT C. jejuni (Figure 3-4). There was 

however a trend towards higher levels of both IL-6 and all IL-12 family in response to the 

∆kpsm strain. ∆pglB showed little difference compared to the WT strain (Figure 3-5). IL-1β 

levels were reduced with the ∆pglB mutant, however this was not statistically significant. 

The ∆flaA strain induced similar levels of TNF-α and IL-6 compared to the WT strain (Figure 

3-6). Similarly, comparable levels of IL-12 family were induced by the flagella mutant. 

Interestingly, there was a significant reduction in the induction of both IL-10 (p <0.01) and  
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Figure 3-4: Cytokine release by BMDCs exposed to a C. jejuni capsule mutant   

1 x106 BMDCs were co-cultured with WT C. jejuni and capsule mutant ∆kpsM at an MOI 100 

for 24h. Cytokine analysis was subsequently performed by ELISA. (a) TNF-α and IL-6 (b) IL-

1β (c) IL-12 family cytokines: IL-12, IL-23, and IL-27 (d) IL-10. Values are means ± SEM from 

a minimum of three independent experiments. One-way ANOVA statistical analysis 

performed with Tukey post-test. No stars = not significant 
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Figure 3-5: C. jejuni N-linked glycosylation system does not alter cytokine induction in 

BMDCs 

1 x106 BMDCs were co-cultured with WT C. jejuni and N-linked glycosylation mutant ∆pglB 

at an MOI 100 for 24h. Cytokine analysis was subsequently performed by ELISA. (a) TNF-α 

and IL-6 (b) IL-1β (c) IL-12 family cytokines: IL-12, IL-23, and IL-27 (d) IL-10. Values are 

means ± SEM from a minimum of three independent experiments. One-way ANOVA 

statistical analysis performed with Tukey post-test. No stars = not significant 
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Figure 3-6: C. jejuni flagellum modulates BMDC IL-10 production 

1 x106 BMDCs were co-cultured with WT C. jejuni and flagella mutant ∆flaA at an MOI 100 

for 24h. Cytokine analysis was subsequently performed by ELISA. (a) TNF-α and IL-6 (b) IL-

1β (c) IL-12 family cytokines: IL-12, IL-23, and IL-27 (d) IL-10. Values are means ± SEM from 

a minimum of three independent experiments. One-way ANOVA statistical analysis 

performed with Tukey post-test. No stars = not significant; * <0.05; ** <0.01; ***<0.001. 
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IL-1β (p <0.05) by ∆flaA strain. The contribution of C. jejuni flagella in mediating high IL-10 

was a novel finding and therefore deserved further attention.   

3.3 Campylobacter jejuni flagella induces early transcription and 

secretion of BMDC IL-10  

The above study identified the flagella moiety to be a major candidate involved in 

modulating C. jejuni-mediated BMDC responses. The absence of the flagella had an impact 

on CD40 expression as well as IL-1β and IL-10 induction.  We next wished to assess if C. 

jejuni flagella mediated effects were operating on cytokine transcriptional and/or 

translational levels (Figure 3-7). Both WT and ΔflaA induced IL-6 gene expression as early as 

1h post-infection, followed by a steady increase with maximal expression noted 4-6h post-

infection (Figure 3-7a). Similarly, IL-1β mRNA was detected at early time-points with peak 

levels seen 2-4h post-infection (Figure 3-7b). p35 and p40 form the two subunits of IL-12 

p70. p40 mRNA was induced at 1h post-infection and peaked at 6h, however p35 levels 

were only detectable at 2h post-infection peaking at 6h with ~25 times lower number of 

transcripts compared to p40 at 4h post-infection (Figure 3-7c & d). IL-10 mRNA was 

detectable at 1h post-infection and peaked at 6h. Interestingly, the transcripts for all the 

cytokines analysed declined after 4-6h post-infection suggesting early signalling events play 

an important role in C. jejuni-mediated cytokine responses. However, transcripts were still 

detectable 24h post-infection for all the cytokines analysed albeit at low levels. 

The ∆flaA mutant induced lower levels of IL-6 and p40 than WT C. jejuni however this was 

not statistically significant (Figure 3-7a and c). The induction of IL-1β and p35 were similar 

between the mutant and WT throughout the duration of the time-course (Figure 3-7b and 

d). Interestingly, IL-10 transcription levels were markedly reduced in response to infection 

with the ∆flaA mutant (Figure 3-7e). The difference in IL-10 transcript levels between the 

WT and ∆flaA were noted as early as 1h post-infection, however significant difference was 

not achieved until 6 and 8h post-infection. Whereas IL-10 mRNA levels from BMDCs 

stimulated with WT strain peaked at 6h post-infection, levels induced by the ∆flaA 

plateaued between 2-6h at approximately half the level detected in response to WT 

infection. No differences were observed between the conditions at the 24h time point. This 

data indicated that the difference in IL-10 protein levels seen in response to the WT and 

∆flaA may be due to effects on gene transcription. In contrast, differences in transcription 

did not account for the effect on IL-1β protein levels seen in response to the two infections.  
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Figure 3-7: IL-10 transcription is reduced in response to infection with ∆flaA C. jejuni   

1 x 106 BMDCs were co-cultured with WT and ∆flaA C. jejuni at an MOI 100 for the 

indicated time points. Quantitative real-time PCR analysis was performed and relative 

levels of transcripts calculated using the ∆∆ct method, utilising the expression of a house-

keeping gene, GAPDH, as a control. Values are expressed at means ± SEM from at least 

three independent experiments. Paired t-test statistical analysis performed. No stars = not 

significant; * <0.05; ** <0.01; ***<0.001. 
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Time-dependent changes observed in IL-10 transcription were also followed at the protein 

level (Figure 3-8). The differential induction of IL-10 by the WT and ∆flaA strains was 

observed at 2h post-infection; however, the difference did not become statistically 

significant until 6h post-infection, a profile similar to its transcription regulation.  

As modulation of IL-10 levels by the ∆flaA mutant were seen early in infection, we 

speculated that direct bacterial mediated signalling events were the likely drivers rather 

than subsequent secondary effects such as autocrine cytokine mediation affecting cytokine 

production. We next wished to identify which BMDC signalling events may be involved in 

regulating IL-10 in response to C. jejuni. 

3.4 C. jejuni flagella modulates p38 but does not alter NF-κB 

activation 

NF-κB signalling is a central regulator of inflammatory responses in APCs. To assess the 

activation of NF-κB, an NF-κB reporter construct driving the expression of luciferase was 

transduced at an MOI 10 into BMDCs on day 3 of differentiation. Luciferase activity induced 

by C. jejuni was analysed 6h post-infection. No luciferase activity was detected in 

untransduced cells either when unstimulated or stimulated with C. jejuni (Figure 3-9a). 

Unstimulated transduced cells showed minimal luciferase activity [less than 1000 arbitrary 

fluorescent units (AFU)]. A dose-dependent increase in luciferase activity was observed 

with WT C. jejuni at an MOI 10 and 100 confirming the ability of the assay to detect 

differential activation of NF-κB.  

IkBα is an inhibitory molecule that sequestors NF-κB in the cytoplasm. Upon upstream 

signalling IkBα is phosphorylated and subsequently degraded, this process releases NF-κB 

to translocate to the nucleus. IkBα is degraded rapidly, within 30mins, in response to C. 

jejuni (Figure 3-9b). New protein synthesis allowed IkBα levels to return to basal levels by 

2h post-infection. This highlighted that NF-κB signalling is rapidly activated in BMDCs in 

response to C. jejuni stimulation.  

The activation of NF-κB in response to the ∆flaA strain was also assessed (Figure 3-9c). 

Similar levels of luciferase activity were observed between the WT and ∆flaA mutant 

suggesting the flagella may not be important for NF-κB activation.  

MAPK signalling is often triggered in addition to NF-κB after the engagement of PRRs. To 

assess the potential activation of MAPK pathways by C. jejuni, time-course experiments 

were performed. All three MAPK pathways, p38, ERK, and JNK were activated (as measured  
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Figure 3-8 Differential IL-10 protein induction in response to infection with WT and ∆flaA 

C. jejuni 

1 x106 BMDCs were co-cultured with WT C. jejuni and flagella mutant ∆flaA at an MOI 100 

for the indicated time-points. IL-10 cytokine analysis was subsequently performed by ELISA. 

Values are means ± SEM from a minimum of three independent experiments. Paired t-test 

statistical analysis performed. No stars = not significant; * <0.05; ** <0.01; ***<0.001.  
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Figure 3-9: C. jejuni mediated BMDC NF-κB activation is not influenced by the flagella 

(a) and (c) BMDCs were transduced with an NF-κB reporter lentivector on day 3 of 

differentiation at an MOI 10. On day 8, 1 x 105 untransduced or transduced BMDCs were 

infected with (a) WT C. jejuni at an MOI 10 or 100 or (c) WT or ∆flaA C. jejuni MOI 100 for 

6h. Bright-glo luciferase reagent was subsequently added and luminescence measured. 

Values are means ± SEM from two independent experiments performed in duplicate. (b) 1 

x106 BMDCs were infected with WT C. jejuni MOI 100 for the indicated time-points. Cell 

lysates were subjected to SDS-PAGE followed by Western blotting with an IκBα antibody. 

Membrane were stripped and re-probed for β-actin as a loading control. Western blots are 

representative of at least three independent experiments. One-way ANOVA statistical 

analysis performed with Tukey post-test. No stars = not significant; * <0.05; ** <0.01; 

***<0.001. 
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by degree of phosphorylation) in response to WT C. jejuni (Figure 3-10a and b). p38 

activation peaked within 30-60mins post-infection, and declined after 2h although 

phosphorylated p38 was detectable 6-8h post-infection. Phospho-ERK was seen within 

30mins post-infection, levels peaking between 60mins-2h, again phospho-ERK was present 

6-8h post-infection. Kinetics of JNK phosphorylation was slow compared to p38 and ERK, as 

phospho-JNK was detected only between 60-90mins post-infection. In addition, JNK 

activation diminished more rapidly, with minimal levels seen at 2h with none detectable at 

4h.  

p38 showed lower magnitude and slower kinetics of activation in response to the  ∆flaA 

isogenic mutant when compared to the WT C. jejuni (Figure 3-10b). Strong activation was 

not observed with the mutant until 90mins post-infection compared to 60mins with the WT 

counterpart. ERK and JNK activation were similarly activated by the ∆flaA and WT strain. 

This suggested a possible role for p38 signalling in the differential cytokine response 

observed between the WT and the ∆flaA strain.  

3.5 Inhibition of MAPK signalling pathways alters cytokine 

production with minimal effect on maturation markers 

Once the activation of BMDC MAPK signalling pathways by C. jejuni was established, the 

potential role of MAPK in the induction of maturation was investigated.  Small chemical 

inhibitors of MAPK have been used successfully in both in vitro and in vivo analysis of the 

role of MAPK in health and disease. U0126 is a potent MEK1/2 inhibitor, the upstream 

kinase of ERK1; PD90859 is a MEK1 inhibitor (Alessi et al. 1995;Favata et al. 1998). U0126 

has a ~ IC50 value of 72nM for MEK1 and 58nM for MEK2 in vitro, whereas PD90859 has a ~ 

IC50 value of 2µM and is therefore used at higher concentrations compared to other MAPK 

inhibitors. SP600125 is a competitive inhibitor of ATP binding for JNK1, 2, 3 and has IC50 

values of 40nM for JNK1 and 2 and 90nM for JNK3 (Bennett et al. 2001). SB203580 and 

SB239063 inhibit the ATP binding site of p38 α and β but not γ or δ isoforms, or ERK and 

JNK (Cuenda et al. 1995;Underwood et al. 2000). Both SB203580 and SB239063 have IC50 

values of ~50nM.  As all the inhibitors were solubilised in DMSO, 1% DMSO was added to 

control media. Cells were pre-treated with the inhibitors or DMSO control for 1h prior to 

stimuli.   
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Figure 3-10: C. jejuni ∆flaA mutant strain mediated delayed p38 activation with minimal 

impact on ERK or JNK  pathways 

1 x 106 BMDCs were co-cultured with (a) WT (b) WT and ∆flaA C. jejuni MOI 100 for the 

indicated time-points. Lysates were subjected to SDS-PAGE followed by Western blot 

analysis for the phosphorylated forms of p38, ERK, and JNK. Blots were stripped and 

probed for total ERK as a loading control. Blots are representative of at least three 

independent experiments. 
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Prior to investigation, it was important to establish if the inhibitors had any effect on the 

rate of bacterial phagocytosis, as this cellular process is critical for multiple downstream 

events. In the presence of a standard concentration of 10µM for p38 and ERK inhibitors 

SB203580 and U0126 rates of bacterial phagocytosis were assessed as described above 

(Figure 3.1). The presence of the inhibitors had minimal effect on the rates of phagocytosis 

measured 4h post-infection (Figure 3-11). Next, effect of MAPK inhibition on C. jejuni-

mediated BMDC maturation marker and cytokine responses was investigated. Two 

concentrations (1 and 10μM) of inhibitors were tested in this series of experiments to 

elucidate if a dose-dependent effect was noted.  Overall inhibition of MAPKs had little 

effect on the expression of maturation markers (Figure 3-12). DMSO treated control cells 

stimulated with C. jejuni showed similar upregulation of CD40, CD80, CD86 and MHC class II 

as seen in the absence of DMSO (Figure 3-12 and Figure 3-3). Inhibition of ERK by U0126 

and PD98059 increased expression of CD40 without the addition of C. jejuni, suggesting a 

possible regulatory role for ERK in the constitutive expression of CD40 (Figure 3-12a). No 

increase in CD40 expression was observed with the addition of C. jejuni under these 

conditions suggesting the CD40 expression had plateaued with the addition of the inhibitor 

alone. The presence of ERK inhibitors had minimal impact on either unstimulated or C. 

jejuni-mediated CD80, CD86, and MHC class II expression (Figure 3-12b, c, and d). Inhibition 

of JNK with SP600125 at either 1µM or 10µM had no effect on CD40, CD80, CD86, and MHC 

class II expression either when unstimulated or stimulated with C. jejuni (Figure 3-12). 

Inhibition of p38 similarly had no effect on the expression of CD40 (Figure 3-12a). Infection 

in the presence of SB203580 and SB239023 marginally increased CD80, CD86, and MHC 

class II although this increase was not statistically significant (Figure 3-12 b, c and d).  

The importance of MAPK signalling in the induction of both pro- and anti-inflammatory 

cytokines has been well documented (Escors et al. 2008). Next, MAPK inhibitors were 

utilised to decipher the importance of MAPK signalling in C. jejuni-mediated cytokine 

induction (Figure 3-13). Inhibition of ERK affected TNF-α secretion at 10µM of both U1026 

and PD90859 (Figure 3-13a). Reduction in IL-6 was also observed with ERK inhibitors but a 

dose-response was not seen and this effect was not statistically significant (Figure 3-13b). 

ERK inhibition had minimal effect on the IL-12 family members (Figure 3-13d, e, and f). 

However, both PD90859 and U0126 caused a significant reduction in IL-10 protein levels 

(Figure 3-13g). PD90859 only affected secretion at 10µM (p<0.01), whereas U0126 

significantly reduced secretion at both 1µM and 10µM concentration (p <0.05, and p 

<0.001 respectively). 
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Figure 3-11: Inhibition of p38 and ERK MAPKs does not alter C. jejuni phagocytosis  

2 x 105 BMDCs were pre-treated with 10µM MEK1/2 (U0126) or p38 (SB203580) inhibitors 

or 1% DMSO as a vehicle control for 1h prior to infection with WT C. jejuni MOI 100 for 4h. 

Intracellular bacterial numbers were assessed by gentamicin protection assay. Values are 

means ± SEM from two independent experiments performed with two biological replicates. 

One-way ANOVA statistical analysis performed with Tukey post-test. No stars = not 

significant 
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Figure 3-12: Inhibition of MAPKs does not alter C. jejuni-mediated maturation marker 

induction 

1 x106 BMDCs were co-cultured with WT C. jejuni MOI 100 for 24h. The levels of (a) CD40 

(b) CD80 (c) CD86 and (d) MHC class II were assessed by flow cytometry. Values are mean 

fold change in the geometric mean fluorescent intensity (MFI) over the expression in 

uninfected  cells ± SEM from a three independent experiments. One-way ANOVA statistical 

analysis performed with Tukey post-test. No stars = not significant 
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Figure 3-13: Inhibition of MAPKs resulted in reduced IL-10 production with minimal effect 

on IL-12 family members 

1 x 106 BMDCs were pre-treated with inhibitors of MAPK pathways, MEK1/2 (U0126 & 

PD90859), JNK (SP600125), or p38 (SB203580 & SB239063) at a concentration of 1µM or 

10µM for 1h prior to infection (PD90859 was used at 5µM and 50µM concentrations). 

BMDCs were co-cultured with WT C. jejuni MOI 100 for 24h in the presence of the 

inhibitors. Supernatants were assessed for the levels of (a) TNF-α (b) IL-6 (c) IL-1β (d) IL-12 

(e) IL-23 (f) IL-27 and (g) IL-10 by ELISA. Values are means ± SEM from three independent 

experiments. One-way ANOVA statistical analysis performed with Tukey post-test. No stars 

= not significant; * <0.05; ** <0.01; ***<0.001. 

D
M

S
O

U
01

26

P
D
90

85
9

S
P
60

01
25

S
B
20

35
80

S
B
23

90
63

0
5
0
0

1
0
0
0

1
5
0
0

*

***

***

***

***
***

***

**

IL
-1

0
 (

p
g

/m
L

)

D
M

S
O

U
01

26

P
D
90

85
9

S
P
60

01
25

S
B
20

35
80

S
B
23

90
63

0

25

50

75

100

125

IL
-1

2
 (

p
g

/m
L

)

D
M

S
O

U
01

26

P
D
90

85
9

S
P
60

01
25

S
B
20

35
80

S
B
23

90
63

0

5

10

15

20

25

IL
-2

3
 (

p
g

/m
L

)

D
M

S
O

U
01

26

PD
90

85
9*

SP
60

01
25

SB
20

35
80

SB
23

90
63

0

2000

4000

6000

* *
*

*

Unstimulated

1M

10M

T
N

F


 (
p

g
/m

L
)

D
M

S
O

U
01

26

P
D
90

85
9

S
P
60

01
25

S
B
20

35
80

S
B
23

90
63

0

5000

10000

15000

20000

25000

* *

IL
-6

 (
p

g
/m

L
)

D
M

S
O

U
01

26

P
D
90

85
9

S
P
60

01
25

S
B
20

35
80

S
B
23

90
63

0

200

400

600

800

1000

IL
-1


 (
p

g
/m

L
)

D
M

S
O

U
01

26

P
D
90

85
9

S
P
60

01
25

S
B
20

35
80

S
B
23

90
63

0

50

100

150

200

IL
-2

7
 (

p
g

/m
L

)

(a)

(g)

(f)(e)

(d)(c)

(b)



93 
 

Inhibition of JNK signalling had minor effects on the secretion of TNF-α, IL-6, and IL-1β at 

10µM concentration, and this was not statistically significant (Figure 3-13 a, b, and c). 

Secretion of IL-12 family members was largely unaffected by the SP600125 inhibitor apart 

from IL-27 at 10µM (Figure 3-13d, e and f). IL-10 secretion was reduced at 10µM inhibitor 

concentration, although this was less than that observed in the presence of the p38 and 

ERK inhibitors (Figure 3-13g).  

At higher inhibitor concentration (10µM) TNF-α and IL-6 production was reduced by ~50% 

in the presence of SB203580 and SB239023 (p< 0.05; Figure 3-13a and b). Interestingly, IL-

1β secretion was enhanced by both p38 inhibitors (Figure 3-13c). Similar to the ERK and 

JNK, p38 inhibition had minimal effect on the IL-12 cytokine family, in contrast this pathway 

had the most pronounced effect on IL-10 protein levels (Figure 3-13g). A ~60% reduction in 

IL-10 secretion was observed at 1µM concentration of both inhibitors (p <0.001 for both). 

This reduction increased to 85% in the presence of 10µM SB203580 (p <0.001). p38 

inhibition had a far greater impact on IL-10 secretion than the other MAPK inhibitors 

suggesting a greater role for this signalling pathway in IL-10 secretion, although inhibitors 

of all three MAPK pathways affected IL-10 secretion. 

As (a) host MAPK signalling and the flagella of C. jejuni modulated IL-10 levels (Figure 3-6, 

Figure 3-13), and (b) the flagella appeared to be important for p38 signalling in particular 

(Figure 3-10), collectively the evidence supported the notion that in BMDC, C. jejuni flagella 

by mechanism(s) yet unknown impacts on p38 signalling leading to downstream 

modulation of IL-10 expression.  We next tested this emerging hypothesis. The ∆flaA 

mutant was used to stimulate BMDCs in the presence of MAPK inhibitors (Figure 3-14).  As 

observed previously, the ∆flaA mutant induced ~60% less IL-10 than the WT C. jejuni strain, 

and the p38 inhibitors had a potent effect at 1µM. In the presence of 1µM SP600125, no 

significant change was observed as a similar ~60% reduction was seen in response to 

infection with the ∆flaA mutant (Figure 3-14). This suggested that C. jejuni flagella accounts 

for 60% of the IL-10 induced by the whole bacterium, and this induction is JNK-

independent. Interestingly, in the presence of 1µM SB203580 and SB239023 only a 36% 

and 43% reduction in IL-10 was seen with the ∆flaA respectively, and 25% less at the higher 

10µM concentration of SB203580.  In the presence of 1µM U0126 also only a 45% 

reduction of IL-10 was observed between the WT and the ∆flaA mutant. These results 

suggested that C. jejuni flagella induced IL-10 in BMDCs via a p38 and ERK-dependent 

mechanism.  
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Figure 3-14: C. jejuni flagella modulates IL-10 production via p38 and ERK pathways  

1 x 106 BMDCs were pre-treated with inhibitors of MAPK pathways, MEK1/2 (U0126 & 

PD90859), JNK (SP600125), or p38 (SB203580 & SB239063) at a concentration of 1µM or 

10µM for 1h prior to infection (PD90859 was used at 5µM and 50µM concentrations). 

BMDCs were co-cultured with WT C. jejuni or ∆flaA mutant MOI 100 for 24h in the 

presence of the inhibitors and supernatants were assessed for IL-10 protein by ELISA. 

Values are means ± SEM from three independent experiments. 
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3.6 Critical role for the flagella ‘glycosylated’ moieties in BMDC IL-

10 production    

During host-microbial crosstalk, bacterial carbohydrate structures and secreted proteins 

can specifically enhance host anti-inflammatory cytokine response(s), as a means of host 

immune evasion. (Nagamatsu et al. 2009; van Vliet et al. 2009). The ∆flaA mutant utilised 

above did not allow delineation of the contribution of the flagellin protein versus the 

contribution of the carbohydrate moiety to IL-10 levels. To rectify this, a variety of specific 

flagella isogenic C. jejuni mutants were employed.  

 Utilising the ∆rpoN mutant (which lacks both the extracellular flagella structure and 

membrane hook complex and is therefore secretion negative), comparable reduction in IL-

10 was observed to the ∆flaA mutant (Figure 3-15). This finding suggested that active 

secretion of C. jejuni via the flagella plays a minimal role in host IL-10 responses. Different 

strains of C. jejuni bear different sugar structures on their flagella (Champion et al. 2005). 

11168H contains both Pse and Leg structures and their derivatives while strain 81-176 

encodes only the Pse structures. To assess whether the flagella alters IL-10 secretion from a 

strain modified with only Pse structures, strain 81-176 was employed. The WT and ∆flaA 

mutant of 81-176 mediated IL-10 response(s) similar to that noted for the 11168H WT and 

its ∆flaA isogenic mutant (Figure 3-16).  The ∆flaA mutant strains induced less IL-10 than 

their WT counterparts, although the reduction in IL-10 secretion for the 81-176 ∆flaA was 

marginally less than for the 11168H ∆flaA. These observations add weight to the notion 

that the flagella from multiple C. jejuni strains are involved in modulating host IL-10 

responses.  

To directly assess the role of flagellin glycosylation in IL-10 induction, a series of 

glycosylation mutants were utilised. Due to the importance of flagellin glycosylation in the 

assembly of the flagella complex the complete carbohydrate mutant is aflagellated and 

therefore could not be used in this assay (Goon et al. 2003). The ∆Cj1324 mutant lacks two 

derivatives of Leg, Leg5AmNMe7Ac and Leg5Am7Ac, and in addition lacks a form of Pse, 

Pse5Ac7Am. Interestingly the complement restores the expression of the Leg structures 

but not the Pse structure (Howard et al. 2009). The ∆Cj1316 or ∆pseA mutant has been 

described in strain 81-176 and lacks Pse5Ac7Am modification of the flaA protein (Guerry et 

al. 2006). The ∆Cj1324 mutant induced less IL-10 than the WT strain (p <0.05), although it 

induced statistically more IL-10 than the ∆flaA mutant (p <0.05; Figure 3-17a).  

Interestingly, the ∆Cj1324 complement did not restore IL-10 secretion to levels of the WT.   
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Figure 3-15: C. jejuni flagella secreted proteins play a minimal role in IL-10 production 

1 x106 BMDCs were co-cultured with WT C. jejuni, ∆flaA (secretion positive) or ∆rpoN 

(secretion negative) isogenic mutants at an MOI 100 for 24h. IL-10 protein levels were 

analysed by ELISA. Values are means ± SEM from a minimum of three independent 

experiments. One-way ANOVA statistical analysis performed with Tukey post-test. No stars 

= not significant; * <0.05; ** <0.01; ***<0.001. 
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Figure 3-16: The flagella of C. jejuni 11168H & 81-176 influences IL-10 production 

1 x 106 BMDCs were co-cultured with WT 11168H or 81-176 C. jejuni or with the 

corresponding flagella isogenic mutant ∆flaA strains at an MOI 100 for 24h. IL-10 protein 

was analysed by ELISA. Values are means ± SEM from a minimum of three independent 

experiments. One-way ANOVA statistical analysis performed with Tukey post-test. No stars 

= not significant; * <0.05; ** <0.01; ***<0.001. 
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Figure 3-17: The Glycosylation moiety of C. jejuni flagella contributes to BMDC derived IL-

10 production 

1 x 106 BMDCs were co-cultured with (a) WT 11168H, ∆flaA, or flagella glycosylation 

mutant ∆Cj1324 or complement (b) WT 11168H, ∆flaA, or flagella glycosylation mutant 

∆Cj1316 at an MOI 100 for 24h. IL-10 levels were analysed by ELISA. Values are means ± 

SEM from a minimum of three independent experiments. One-way ANOVA statistical 

analysis performed with Tukey post-test. No stars = not significant; * <0.05; ** <0.01; 

***<0.001. 
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These observations suggested a potential role for the Pse5Ac7Am structure which is not 

complemented in the strain. This finding was confirmed with the ∆Cj1316 mutant, which 

also showed reduced IL-10 secretion when compared to the WT strain (Figure 3-17b). As 

there was no statistical difference between the ∆Cj1316 and ∆flaA mutant-mediated IL-10 

levels we hypothesised that the Pse5Ac7Am modification is a major component involved in 

the induction of IL-10.     

Reduction in IL-10 secretion was also seen when infections with the ∆flaA and ∆Cj1316 

mutants were conducted in human monocyte-derived DCs (Figure 3-18). This was an 

important observation, as it confirmed that findings in murine BMDCs can be extrapolated 

to human DCs, and therefore the use of BMDCs is an appropriate model to study C. jejuni 

flagella/host interactions. 

3.7 Discussion 

 Various surface determinants of C. jejuni are known to modulate adhesion/invasion and/or 

cytokine induction in IEC and innate immune cells (Bacon et al. 2001; Golden et al. 2004; 

van Sorge et al. 2009). The aim of the present study was to determine the role of three 

principal surface structures of C. jejuni in the modulation of DC responses.   

The ability of BMDCs to phagocytose and kill C. jejuni was confirmed in the present study 

(Figure 3-1). The data obtained was similar to published reports (Hu et al. 2008). This 

highlighted the inability of C. jejuni to replicate within DCs. To quantify intracellular viable 

bacteria the gentamicin protection assay was used. The seemingly low ratio of total 

intracellular bacteria/DC obtained by this assay may reflect a change in the culturability of 

bacteria once exposed to the phagosome/lysosome. However, the ratios obtained in this 

study were similar to previous reports (Rathinam, Hoag, & Mansfield 2008). Confocal 

microscopy would be useful to assess the total number of internalised bacteria, in 

comparison to the viable numbers assessed by the gentamicin protection assay. The 

reduced phagocytic capability of BMDCs seen at 24h most likely reflects the maturation 

process of the DCs, as it correlated with the upregulation of maturation markers (Figure 

3-3, Figure 3-7). In comparison to neutrophils and macrophages, DCs have reduced 

capability to acidify their phagolysosomes, which is critical to fulfil their primary role as 

antigen presenters opposed to pathogen killers (Savina et al. 2006).This likely accounts for 

why not all internalised bacteria are killed after 4h (Figure 3-1b). In contrast to DCs and 

macrophages, C. jejuni has been reported to survive in IECs for greater than 24h by 

avoiding delivery to the lysosome (Watson & Galan 2008). This is thought to be important  
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Figure 3-18: The Glycosylation moiety of C. jejuni flagella modulates human monocyte-

derived DC IL-10 protein  

1 x 105 human monocyte-derived DCs were stimulated with WT C. jejuni, ∆flaA, or ∆Cj1316 

mutants at an MOI 100 for 24h. Supernatants were assessed for IL-10 protein levels by 

ELISA. Values are means ± SEM from 3 donors. One-way ANOVA statistical analysis 

performed with Tukey post-test. * <0.05; ** <0.01.  
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in disease pathogenesis. The ability of DCs and other APCs to kill C. jejuni is likely to be 

critical in inhibiting dissemination of the bacterium throughout the body. This may aid the 

eventual clearance of the pathogen negating a chronic infectious state as seen in other 

pathogenic microbial infections, such as Mycobacterium tuberculosis, which is able to 

inhibit phago-lysosome fusion within APCs (Wolf et al. 2007). 

 Although the capsule of other pathogenic bacteria are known to aid evasion of 

phagocytosis, no change in the rate of C. jejuni phagocytosis was observed when a capsule 

isogenic mutant was utilised (Figure 3-2)(Evrard et al. 2010; Unkmeir et al. 2002). The 

capsule however is important for reduced serum sensitivity and invasion of IECs suggesting 

it does play a role in interactions with other host cells (Bacon et al. 2001) Professional APCs 

express a plethora of phagocytic receptors and redundancy between them is an essential 

part of the host-immune response. This redundancy may explain the lack of difference in 

phagocytosis observed between the WT and the isogenic mutants of the capsule, N-linked 

glycosylation system, and the flagella (Figure 3-2). 

Despite finding no differences in phagocytosis between the structural mutants and the WT 

strain, alteration in maturation marker and cytokine expression was observed (Figure 3-3, 

Figure 3-4, Figure 3-5, Figure 3-6). Figure 3-4 highlights a potential role for the CPS in the 

inhibition of IL-6 and IL-12 family members. An increase in IL-6, TNF-α, and IL-10 with the 

capsule mutant has subsequently been reported by Rose and colleagues (Rose et al. 2011) 

A component of the CPS, O-methyl phospharamidate (MeOPN), is important for C. jejuni 

virulence in the Galleria mellonella (wax moth) infection model (Champion et al. 2010). 

Whether C. jejuni CPS engages in specific glycan-binding receptors that suppress immune 

responses or alternatively masks underlying bacterial components from the host immune 

system remains to be determined.  

On human monocyte-derived DCs, the GalNAc binding receptor, Macrophage-Galactose-

type Lectin (MGL) can interact with C. jejuni N-linked glycosylated protein(s) leading to a 

reduction in IL-6 (van Sorge et al. 2009). However in the present study no significant 

differences were observed between the WT and N-linked glycosylation mutant strain in 

BMDCs (Figure 3-5). Although BMDCs do express the murine orthologs of human MGL, 

MGL1 and MGL2, whether these receptors have the same modulatory effects on DC 

function as the human counterpart remains unknown and may explain the lack of 

observable difference (Denda-Nagai et al. 2010).   
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Due to specific mutations in its primary amino acid sequence, C. jejuni FlaA protein can no 

longer be recognised by TLR5 (Andersen-Nissen et al. 2005). It was therefore interesting to 

find that the flagella mutant, ∆flaA, induced ~50% less IL-10 than the WT strain whilst IL-6, 

TNF-α, and IL-12 family member cytokine levels were unaffected (Figure 3-6). This data 

clearly indicated that C. jejuni flagellin may be interacting with other, as yet unknown 

receptors to modulate IL-10 expression. IL-10 is a critical cytokine in gut homeostasis, and 

IL-10 deficient mice develop spontaneous colitis (Kuhn et al. 1993). Due to the potent anti-

inflammatory effects of IL-10 it is interesting to speculate that the specific modulation of IL-

10 by C. jejuni is an immune-evasion strategy. In addition, the ∆flaA mutant induced less IL-

1β suggesting a potential role for the NLR IPAF which recognises intracellular flagellin, in C. 

jejuni-mediated IL-1β secretion (Miao et al. 2010b). Investigation of the potential effect of 

C. jejuni-BMDC crosstalk in IL-1β secretion is reported in Chapter 4. In agreement with 

these findings it has subsequently been reported by Rose and colleagues that the ∆flaA 

mutant does indeed induce less IL-10 compared to the WT strain, accompanying only a 

minor reduction in pro-inflammatory cytokines (Rose et al. 2011).  

 Although all three MAPKs are linked to the induction of pro-inflammatory cytokines and 

maturation markers in DCs, p38 and JNK appear to be more critical for these functions 

(Escors et al. 2008;Miao et al. 2010b). It was therefore surprising to find a trend towards 

enhanced IL-1β production in the presence of p38 inhibitors (Figure 3-13). This may be 

explained by the intricate cross-talk that occurs between MAPK pathways. p38 causes the 

phosphorylation and inhibition of the regulatory subunit of a complex containing the 

MAP3K TAK-1, a MAP3K involved in the activation of p38, JNK, and NF-κB (Cheung et al. 

2003). Therefore, p38 inhibition can lead to an increase in JNK phosphorylation and NF-κB 

activation, this enhances inflammatory responses. This is just one example that highlights 

the challenge in dissecting the role of individual MAPKs in DC function. The reduction of C. 

jejuni-induced IL-10 production by p38 inhibition may be linked to another regulatory step 

in the MAPK signalling web, i.e. activation of the kinases MSK1 and MSK2 (Figure 3-13). 

Downstream of p38 and ERK, MSK1 and MSK2 activate the transcription of DUSP1 (a 

regulatory phosphatase of MAPKs) and IL-10, creating a negative feedback loop on the 

activation of these two MAPKs (Ananieva et al. 2008). This may also explain the reduction 

in IL-10 observed under MEK1/2 inhibition (Figure 3-13). Both ERK and p38 signalling 

pathways have been implicated in the induction of IL-10 (Ma et al. 2001; Saraiva and 

O'Garra 2010). Interestingly, previous reports show TLR stimulation in the presence of ERK 

and p38 inhibitors almost completely abolishes IL-10 secretion suggesting these pathways 
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combine to induce IL-10 in DCs and macrophages (Saraiva & O'Garra 2010). A dependence 

on ERK and p38 for IL-10 induction may also explain why the ∆flaA mutant affects p38 

signalling, and IL-10 induction (Figure 3-9; Figure 3-10; Figure 3-6). A minimal effect on 

other signalling pathways, such as NF-κB, may explain why the ∆flaA and MAPK inhibitors 

failed to impact on IL-12 family members (Figure 3-6; Figure 3-13).   

The use of a secretion positive (∆flaA) and secretion negative (∆rpoN) flagella mutant 

strains revealed that proteins secreted from C. jejuni flagella play no role in IL-10 induction 

(Figure 3-16). Use of C. jejuni flagella glycosylation mutants implied that the carbohydrate 

modification of C. jejuni flagellin protein, FlaA, is involved in modulating BMDCs and human 

monocyte-derived DC IL-10 levels (Figure 3-17; Figure 3-18).  In particular, the Pse5Ac7Am 

moiety appeared to be critical. Pse and Leg are structurally related to sialic-acid. Siglecs are 

receptors that engage sialic acid both on host cells and microorganisms and are generally 

regarded as immunomodulatory (Crocker, Paulson, & Varki 2007; Crocker & Redelinghuys 

2008). It has been suggested that interaction between pathogens and host Siglecs 

receptors may promote mechanisms involved in immune evasion, including the induction 

of IL-10 (Ando et al. 2008). We next wished to delineate any potential cross-talk between 

Pse and Leg-linked C. jejuni flagella and Siglec receptors, interactions that remain largely 

unexplored in C. jejuni-mediated disease pathogenesis.            
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Chapter 4.  

Recognition of C. jejuni by innate 

immune cells is both TLR-dependent 

and TLR-independent 
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4.1 Background 

The activation of PRRs leads to a wide plethora of cellular phenotypic changes; changes 

that depend on the PRR engaged, and in addition the specificity of the ligand involved. 

PRRs can both activate and modulate immune signalling within DCs. The most widely 

studied PRRs are the TLRs, which are critical for stimulating inflammatory responses via the 

activation of MAPK, NF-κB, and IRF3 signalling pathways. In comparison the role of other 

PRRs such as glycan binding receptors in pathogen recognition and host defence is just 

starting to be appreciated. Additionally, the role of intracellular PRRs such as the NLR family 

in activation of the inflammasome which aids pathogen clearance has recently gained 

attention in innate immune research. 

TLR2 and TLR4 are important for the recognition of C. jejuni by BMDCs (Rathinam et al. 

2009). TLR4 signalling is particularly crucial for the induction of IL-12, IL-6, and TNF-α; 

however the role of TLR signalling in IL-10 responses has not been reported.  Our 

observations (Chapter 3) suggested that the C. jejuni flagellin protein, FlaA, and in 

particular the pse5Ac7Am modification on the flagellin monomers may be important for 

the induction of IL-10. Mutations in the C. jejuni FlaA protein (also seen in other ε-

proteobacteria FlaA proteins) results in a PAMP that is unable to bind to its cognate TLR; 

TLR5 (Andersen-Nissen et al. 2005). The only other known PRR for flagellin protein is the 

NLR member, IPAF (NLRC4). IPAF is also capable of detecting the type three secretion 

system (TTSS) of multiple pathogens (Miao et al. 2010b). The mechanism for this multi-

specificity involves the detection of either flagellin or TTSS rod proteins by different NLR 

family Apoptosis Inhibitory Protein (NAIP) members upstream of IPAF which upon ligand 

binding induce interaction between NAIPs and IPAF causing the activation of the 

inflammasome (Zhao et al. 2011). NAIP5 is the intracellular receptor for flagellin proteins 

for Salmonella and Legionella and most likely may interact with other bacterial species. 

Mutational studies have identified specific amino acid residues in the carboxyl-terminal of 

flagellin protein that are involved in mediating IPAF-dependent inflammasome activation 

(Miao et al. 2010b). No studies to date have analysed if and how Campylobacter sp. 

activates the inflammasome.  

Candidate receptors for the engagement of these sialic-acid like structures include the 

Siglec family of glycan receptors. In a previous study the ability of C. jejuni to bind to Siglec-

10 was reported; this interaction was considered to be independent of sialylated LOS as the 

C. jejuni/Siglec-10 interaction was not sensitive to sialidase treatment and purified LOS did 
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not bind the receptor (Avril et al. 2006). However, as the LOS is the only known sialylated 

structure on C. jejuni it was concluded that this interaction was likely to be non-specific 

(Professor Paul Crocker, University of Dundee; personal communication). The ability of 

sialic-acid like structures on the flagella to engage Siglec-10 remains unclear. Although sialic 

acids are the best characterised ligands for Siglecs, recent emerging data suggests that 

multiple ligands may bind and activate Siglec receptors (Carlin et al. 2009a; Kivi et al. 2009). 

The 9-carbon pseudaminic acid (Pse) and legionaminic acid (Leg) share many of the 

reported critical residues required for binding to the Siglec sialic-acid binding pocket (May 

et al. 1998). Recognition of structures similar to Neu5Ac by Siglecs has not been extensively 

studied. A single report found discrepancy between human and chimpanzee Siglec-9, which 

have greater affinities for Neu5Ac and Neu5Gc respectively, as during evolution of higher 

primates humans have lost the ability to produce Neu5Gc (Sonnenburg et al. 2004).  

4.2      TLR signalling is essential for the activation of BMDCs in 

response to C. jejuni 

TLR signalling is essential for the activation of APCs in response not only to a plethora of 

microbes but also to endogenous danger ligands, DAMPs. At the start of this study, little 

was known of the role of TLR engagement in C. jejuni-mediated DC activation; although the 

ability of C. jejuni CPS to stimulate IEC TLR2 leading to IL-6 production was known (Friis, 

Keelan, & Taylor 2009). MyD88 and TRIF are two essential adaptor molecules for TLRs 1, 2, 

4, 5, 6, 7, 8, 9, and TLR 3, 4 respectively (Takeda et al. 2003). TLR4 is the only TLR known to 

utilise both MyD88 and TRIF adaptor molecules.  To investigate a potential role for TLR 

signalling in DC responses to C. jejuni, BMDCs were generated from singular and combined 

double knock-outs (DKO) in the two adapter molecules (MyD88-/-, TRIF-/-, MyD88-/- TRIF-/-

(DKO) and WT). Co-cultures studies were performed and DC cellular processes including 

phagocytosis, the regulation of maturation markers, cytokine secretion, and signalling 

pathways were analysed.  

TLR signalling increases rate of macropinocytosis (West et al. 2004). It was therefore 

essential to assess the rate of C. jejuni phagocytosis in the knock-out cells prior to 

commencing detailed analysis. Figure 4-1 shows abolishing TLR signalling did not alter the 

rate of uptake of C. jejuni as measured 4h post-infection. This data indicated that TLR 

signalling may not be essential for early internalisation of C. jejuni. 

The upregulation of maturation markers, CD40 and CD80, in WT BMDCs in response to C. 

jejuni infection was similar to results reported in Chapter 3 (Figure 3-3); a ~2-fold increase  
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Figure 4-1: TLR signalling does not alter C. jejuni phagocytosis by BMDC  

2 x10 5 BMDCs from WT (WT), TRIF-/-, MyD88-/-, and TRIF-/-MyD88-/- double knock-out (DKO) 

were co-cultured with C. jejuni 11168H MOI 100 for 4h. Viable intracellular bacterial 

numbers were enumerated by the gentamicin protection assay. Values are means ± SEM. 

One-way ANOVA statistical analysis performed with Tukey post-test. No stars = not 

significant.  
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in the MFI of both markers was observed (Figure 4-2). The upregulation of CD40 in both 

MyD88-/- and TRIF-/- DC was ~ 50% of the response to that seen in WT DCs. Co-culture with 

the DKO resulted in no upregulation of CD40 (p=0.03). A similar phenotype was also 

observed for CD80, both single mutations approximately halved the induction of CD80 

whereas the DKO completely abolished upregulation. Upregulation of CD40 and CD80 in 

response to the LPS control was very similar to live C. jejuni. This pattern suggested a 

combined impact of both MyD88- and TRIF-dependant TLR signalling pathways in the 

induction of CD40 and CD80, and that these signalling adaptors may act in an additive 

manner in mediating regulation of CD40 and CD80. 

The activation of TLRs is known to drive differential cytokine expression (Sing et al. 

2002;Takeda, Kaisho, & Akira 2003). It was therefore important to study the cytokine 

expression profiles induced by C. jejuni in the different KO cells (Figure 4-3). LPS mediates 

TLR signalling via TLR4 which utilises both TRIF and MyD88 adaptor molecules and was 

therefore included as a control. Marked increase in IL-6 was observed in WT BMDCs upon 

infection, similar to those reported in Chapter 3 (Figure 4-3a; Figure 3-4). A trend for 

decreased IL-6 induction was noted in TRIF-/- BMDCs but this gained greater significance in 

the MyD88-/- BMDCs. Complete abrogation of IL-6 was seen in DKO BMDCs. LPS-mediated 

IL-6 was more markedly reduced in TRIF-/- BMDCs than for C. jejuni. However, similar to C. 

jejuni-stimulation, a greater reduction in LPS-mediated IL-6 was noted in MyD88-/- 

compared to TRIF-/- BMDCs. Together data suggested greater dependence on MyD88 

signalling for the induction of IL-6 by C. jejuni whereas LPS induced IL-6 required both 

signalling pathways.  

Conversely, IL-1β secretion depended on the signalling of both TRIF and MyD88 pathways 

(Figure 4-3b). A similar reduction of IL-1β levels was observed in both single and double KO 

cells for both C. jejuni and LPS stimulation. ~50% reduction in IL-12 levels was observed in 

TRIF-/- and MyD88-/- BMDCs, the cytokine was undetectable in DKO BMDCs (Figure 4-3c). IL-

23 levels were below the detection threshold for both C. jejuni stimulated single and 

double KO BMDCs (Figure 4-3d). Interestingly, C. jejuni-mediated IL-10 levels were not 

significantly reduced in the TRIF-/- BMDCs, whereas it was completely abolished in the 

MyD88-/- and DKO cells (Figure 4-3e). In contrast LPS-mediated IL-10 secretion was affected 

by both TRIF and MyD88 signalling pathways. These observations suggested a cumulative 

effect of MyD88 and TRIF signalling in IL-12 release by C. jejuni in contrast, IL-10 secretion 

was solely MyD88-dependent. 
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(a) 

 

(b) 

Figure 4-2: TLR signalling is essential for C. jejuni-mediated induction of BMDC maturation 

markers 

1 x 106 BMDCs generated from WT (WT), TRIF-/-, MyD88-/-, and TRIF-/-MyD88-/- double 

knock-out (DKO) mice were co-cultured with C. jejuni 11168H MOI for 24h. CD40 and CD80 

expression levels were assessed by flow cytometry. (a) Representative histograms from 

three independent experiments are shown. Isotype control (dashed line), unstimulated 

cells (solid grey), and C. jejuni stimulated levels (back line).  (b) Fold increases in MFI from 

the unstimulated cells. Values are means ± SEM. Paired t-test statistical analysis performed 

to compare specific columns.  
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Figure 4-3: TLR signalling is essential for C. jejuni-mediated BMDC pro- and anti-

inflammatory cytokine responses 

1 x106 WT, TRIF-/-, MyD88-/-, and DKO BMDCs were co-cultured with C. jejuni 11168H at an 

MOI 100 for 24h. Cytokine analyses was performed by ELISA for IL-6 (b) IL-1β (c) IL-12 (d) IL-

23 (e) IL-10. Values are means ± SEM from a minimum of three independent experiments. 

One-way ANOVA statistical analysis performed with Tukey post-test. No stars = not 

significant; * <0.05; ** <0.01; ***<0.001. 
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As MAPK activation is important in the induction of certain cytokines by C. jejuni (Figure 

3-13), and is downstream of TLRs (Takeda, Kaisho, & Akira 2003), we next wished to 

establish the impact of the absence of TLR signalling on C. jejuni-mediated MAPK activation 

(Figure 4-4). Interestingly, early activation of ERK was unaffected in the KO cells, however 

strong ERK signalling at 2h post-infection was only observed in the WT and TRIF-/- BMDCs. 

The DKO and MyD88-/- cells showed a similar pattern of early weak activation to C. jejuni 

but a lack of subsequent strong ERK activation at 2h. JNK activation was observed at 1h 

post-infection, with strong signalling at 2h. JNK phosphorylation was completely abolished 

in the DKO cells highlighting the necessity of TLR signalling for JNK activation. In TRIF-/- 

BMDCs JNK activation followed the same kinetics as the WT cells, however in MyD88-/- cells 

JNK activation was delayed being only detectable at 2h post-infection. In WT cells p38 

phosphorylation was detectable at 1h and 2h post-infection. Similarly to JNK signalling, p38 

phosphorylation was completely abolished in the DKO cells. Mirroring JNK activation, in 

TRIF-/- BMDCs kinetics of p38 phosphorylation was similar to that seen in WT cells. In 

contrast, p38 activation was completely abrogated 2h post-infection in MyD88 KO DCs. It is 

worth noting that the MyD88-dependent signalling appeared to alter all three MAPK 

pathways to a greater extent than TRIF-dependent signalling, and correspondingly MyD88 

seemed to have a greater potential role in the induction of specific cytokines, in particular 

IL-6 and IL-10.  

Taken together our observations suggested that C. jejuni-mediated BMDC cytokine 

responses were TLR-dependant. This raised a conundrum as to how C. jejuni flagella 

mediates IL-10 production and is yet not recognised by TLR5 (Andersen-Nissen, Smith, 

Strobe, Barrett, Cookson, Logan, & Aderem 2005). There have been multiple examples of 

pathogens interacting with carbohydrate binding receptors that modulate TLR signalling, 

often for the pathogens advantage (Gringhuis et al. 2007; Gringhuis et al. 2009). We 

hypothesised that glycosylated moiety of C. jejuni flagella interacts with as yet unidentified 

host receptors leading to modulation of IL-10 responses. We therefore assessed the ability 

of C. jejuni glycosylated flagella to interact with carbohydrate receptors independent of 

TLRs. 
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Figure 4-4: TLR signalling is essential for C. jejuni-mediated MAPK activation  

1 x 106 WT, TRIF-/-, MyD88-/-, and DKO BMDCs were co-cultured with C. jejuni 11168H MOI 

100 for the indicated time-points. Lysates were subjected to SDS-PAGE followed by 

Western blot analysis for the phosphorylated forms of p38, ERK, and JNK. Blots were 

stripped and probed for total ERK as a loading control. Blots are representative of two 

independent experiments. 
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4.3 Siglec-10 binds derivatives of Pseudaminic acid, components of 

C. jejuni flagella    

In 2006 a report indicated that C. jejuni binds to Siglec-7 via α2,8- linked sialic acid residues 

found on C. jejuni LOS (Avril et al. 2006). The authors also found two C. jejuni strains were 

able to bind to Siglec 10-Fc chimeras. As the interaction was not sialidase-sensitive the 

authors speculated that the interaction between the C. jejuni strains and Siglec-10 was non-

specific and therefore did not investigate this phenomenon any further. Here, the possible 

role of Siglec-10 in the binding of derivative of pseudaminic acid (Pse) structures present on 

C. jejuni flagella was explored. Siglec-10 is the human ortholog of Siglec-G which is 

expressed on murine BMDCs (Chen et al. 2009; Ding et al. 2007). Siglec-10 and Siglec-G 

share high sequence identity and conserved protein structure (Angata et al. 2001).  

Before undertaking binding assays the expression of Siglec-10 on human monocyte-derived 

DCs was firstly confirmed by flow cytometry (Figure 4-5) (Li et al. 2001). To investigate 

potential C. jejuni-Siglec-10 interactions, CHO cells overexpressing Siglec receptors were 

utilised. Siglec-7 is known to bind to C. jejuni bearing α2,8-linked sialylated LOS. 99% of 

Siglec-7 overexpressing cells expressed the receptor (Figure 4-6a) and ~80% of Siglec-10 

CHO cells expressed Siglec-10 (Figure 4-6b). WT CHO cells expressed neither Siglec-7 nor 

Siglec-10. To perform binding assays, C. jejuni strains were labelled with fluorescein 

isothiocyanate (FITC) for 1h at 37oC. C. jejuni strains WT, ∆flaA and ∆Cj1316 were all 

labelled with FITC to the same extent (Figure 4-7). Sialidase treatment of Siglec 

overexpressing CHO cells is routinely performed in binding assays to eliminate cis-

interactions between Siglecs and sialic acid found on the cell surface as this interaction 

reduces binding of Siglecs to ligands in trans (Avril et al. 2006). Optimisation assays were 

initially performed with Siglec-7 overexpressing CHO cells with C. jejuni strains GB11 and 

GB19, strains known to express α2,3-linked  and α2,8-linked sialic acid on their LOS 

respectively. Siglec-7 CHO cells were pre-treated with 0.1U/mL C. perfringens sialidase for 

1h to remove sialic acid prior to exposure to C. jejuni GB11 and GB19 at an MOI 100 for 2h 

at 4oC.  Differential binding pattern to siglec-7 CHO cells was observed between the two 

strains (Figure 4-8). Incubation at 4oC prevents endocytosis and bacterial uptake, therefore 

the data depicted Siglec-ligand binding alone.  

WT 11168H C. jejuni bound specifically to sialidase-treated Siglec-10 CHO cells compared to 

WT CHO cells (Figure 4-9a). Bacterial binding index (BBI) is a value derived from multiplying 

the percentage of CHO cells bound with FITC labelled bacteria by the geometric mean  
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Figure 4-5: Siglec-10 is expressed on human monocyte-derived DCs 

A representative histogram of human monocyte-derived DCs were stained with primary 

mouse monoclonal antibody, 5G6, and PE-conjugated donkey anti-mouse secondary 

antibody (black line), or secondary antibody alone (solid grey line). Histograms are 

representative of three independent experiments. 
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Figure 4-6: Siglec-CHO overexpressing cells specifically express Siglec-10 and Siglec-7  

WT and Siglec-overexpressing CHO were stained for Siglec expression and analysed by flow 

cytometry (a) WT CHO cells stained with anti-siglec-10 (b) siglec-10 CHO cells stained with 

anti-siglec-10 (c) WT CHO cells stained with anti-siglec-7 (d) siglec-7 CHO cells stained with 

anti-siglec-7. Data are representative histograms from two independent experiments. 
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Figure 4-7: FITC labelling of C. jejuni  

3 x 109 CFU/mL [(a) WT (b) ∆flaA (c) ∆Cj1316] C. jejuni were mixed 1:1 with a saturated FITC 

solution for 1h  at 37oC. Labelling of bacteria was subsequently assessed by flow cytometry. 
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Figure 4-8: C. jejuni strain GB19 binds specifically to Siglec-7  

Potential Siglec-CHO cells and C. jejuni interactions. Optimisation studies; 3 x 105 sialidase-

treated WT or siglec-7 expressing CHO cells were incubated with FITC-labelled C. jejuni 

strains GB11 or GB19 at an MOI 100 for 2h at 4oC. Binding was analysed by flow cytometry. 

Histograms are representative of two individual experiments. 
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fluorescence intensity (MFI) of the positive population. BBI gives an indication of the level 

of bacterial binding to the CHO cells (Avril et al. 2006). The BBI used in this study is a slight 

revision from previous studies as it uses the geometric mean rather than the mean 

fluorescence intensity because the population was normally distributed on a logarithmic 

scale.   

Figure 4-9b shows a trend towards an increase in BBI value with sialidase treatment of the 

siglec-10 CHO cells. As only 80% of Siglec-10 CHO cells express the receptor this enabled a 

more detailed analysis of which cells specifically bound C. jejuni. Siglec-10 CHO cells were 

counter stained with Siglec-10 after a 2h co-culture. Figure 4-10 shows a doubling in the BBI 

value with the Siglec-10 positive cells over Siglec-10 negative cells. This value is less than 

the binding seen in Figure 4-9. One possible explanation is the additional wash steps in the 

counterstaining removes many of the bound bacteria. The binding of 11168H to Siglec-10 

CHO cells could be specifically inhibited with the addition of a polyclonal anti-siglec-10 

antibody (Figure 4-11), whereas the irrelevant polyclonal anti-Siglec-5 antibody made no 

impact on bacterial binding.  

C. jejuni strain 11168H contains only internal α2,3-linked sialic acid residues on its LOS, and 

is therefore not predicted to bind to any known Siglec. Binding assays were performed with 

various sialic-acid family mutants of C. jejuni 11168H to determine the critical moieties 

involved in interacting with Siglec-10. Figure 4-12a shows representative histograms of C. 

jejuni WT and isogenic mutant strain interactions with Siglec-10 CHO cells. The top four 

histograms show comparable binding of the WT and isogenic mutants to WT CHO cells. The 

lower four histograms show WT C. jejuni can bind to Siglec-10 cells as seen in Figure 4-9. In 

addition the ∆waaF mutant (which expresses a truncated LOS structure and therefore lacks 

the sialic acid residue on the LOS) bound to Siglec-10 CHO cells signifying that the LOS sialic 

acid is not critical for Siglec-10 engagement. Conversely both the flagella mutant, ∆flaA, 

and flagella Pse5Ac7Am mutant, ∆Cj1316, showed comparable binding to Siglec-10 and WT 

CHO cells. Differences in binding of the WT 11168H and Pse5Ac7Am mutant strain to 

Siglec-10 CHO cells was found to be statistically significant (p <0.01; Figure 0.12b). These 

observations suggest potential novel interaction(s) between the Pse5Ac7Am modifications 

(or derivatives of) on C. jejuni flagella and host Siglec-10 receptors.        
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(b) 

Figure 4-9: C. jejuni 11168H binds to Siglec-10 overexpressing CHO cells  

3 x 105 sialidase-treated (S-treat) WT, un-treated siglec-10 overexpressing, or sialidase-

treated siglec-10 overexpressing CHO cells were mixed with FITC-labelled C. jejuni strain 

11168H MOI 100 for 2h  at 4oC. Binding was analysed by flow cytometry. (a) Both WT and 

Siglec-10 cells were sialidase treated. Histograms are representative of six independent 

experiments. (b) Bacterial binding index was calculated by the percentage of CHO cells 

bound with FITC labelled bacteria by the geometric MFI of this population. Values are 

means ± SEM from a minimum of three independent experiments. One-way ANOVA 

statistical analysis performed with Tukey post-test. No stars = not significant; * <0.05; ** 

<0.01; ***<0.001. 
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Figure 4-10: C. jejuni binds specifically to Siglec-10 overexpressing CHO cells 

3 x 105 sialidase-treated Siglec-10 overexpressing CHO cells were mixed with FITC-labelled 

C. jejuni strain 11168H MOI 100 for 2h at 4oC. Cells were counter-stained with monoclonal 

5G6 anti-siglec-10 primary antibody and PE-secondary antibody. Cells were analysed by 

flow cytometry. (a) Representative dot plot of four individual experiments. Values are 

percentages within the individual quadrants (b) Mean values ± SEM for the bacterial 

binding index of the siglec-10 negative and positive populations.    
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Figure 4-11: Polyclonal antibodies specifically inhibit C. jejuni binding to Siglec-10 cells  

3 x 105 sialidase-treated (a) WT CHO cells (b) sialidase-treated siglec-10 CHO cells (c) 

sialidase-treated siglec-10 CHO cells in the presence of 10µM polyclonal antibody anti-

Siglec 10 (Ab) (d) sialidase-treated siglec-10 CHO cells in the presence of 10µM irrelevant 

polyclonal anti-Siglec 5 Ab  mixed with FITC-labelled C. jejuni strain 11168H MOI 100 for 2h 

at 4oC. Binding was analysed by flow cytometry. Histograms are representative of two 

independent experiments. (e) Mean bacterial binding index values ± SEM from two 

independent experiments. 
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Figure 4-12: Pseudaminic acid structures on C. jejuni flagella mediate Siglec-10 binding 

3 x 105 sialidase-treated WT or Siglec-10 CHO cells with FITC-labelled WT C. jejuni strain 

11168H, or isogenic mutant strains ∆flaA, ∆Cj1316, ∆waaF MOI 100 for 2h at 4oC. Binding 

was analysed by flow cytometry. (a) Histograms are representative of three independent 

experiments. (b) Mean bacterial binding index values ± SEM from six independent 

experiments. One-way ANOVA statistical analysis performed with Tukey post-test. No stars 

= not significant; * <0.05; ** <0.01; ***<0.001. 
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4.4 C. jejuni-mediated inflammasome activation is IPAF-

independent 

The ∆flaA flagellin mutant of C. jejuni 11168H strain induces significantly less IL-1β 

secretion than the WT strain (Figure 3-6). IPAF (NLRC4) is an intracellular NLR that 

recognises the flagellin protein and the type III secretion apparatus of bacteria (e.g. 

Salmonella typhimurium), this interaction initiates a cascade culminating in caspase-1 

activation and secretion of bioactive IL-1β and IL-18 (Franchi et al. 2006; Miao et al. 2010b). 

Amino acid alignment revealed that the C. jejuni FlaA protein contains critical amino-acids 

required for the activation of IPAF (Figure 4-13a) (Miao et al. 2010b), we therefore tested 

the ability of C. jejuni to activate the inflammasome (caspase-1 cleavage) via IPAF and other 

NLR proteins.  

Activation of the inflammasome can also induce pyroptosis, an alternative form of cell 

death to apoptosis and necrosis (Miao et al. 2010a). Trypan blue exclusion revealed 

minimal cell death in BMDCs as a consequence of co-culture at an MOI 100 for 24h 

suggesting pyroptosis is unlikely being induced by C. jejuni (data not shown). To decipher 

the potential crosstalk between C. jejuni and the inflammasome machinery, infections were 

conducted in BMDCs lacking individual NLRs, this included IPAF, NALP3, and ASC KO 

BMDCs. Phagocytosis rates after a standard 2h co-culture revealed comparable levels of 

uptake between the inflammasome mutants and WT BMDCs (Figure 4-13a). The 

bactericidal activities of the different mutants were also comparable to the WT cells; all 

internalised bacteria were killed by 24h post-infection (Figure 4-13b). This data showed 

efficient killing of internalised C. jejuni was independent of IPAF-, NALP3- and ASC-

dependent inflammasome activation. 

The ability of C. jejuni to induce IL-1β secretion was almost completely abrogated in the 

NALP3- and ASC-deficient BMDCs (Figure 4-14). In IPAF-/- BMDCs IL-1β secretion levels were 

comparable to WT in response to both C. jejuni- or LPS-stimulation, suggesting that IPAF 

plays a minimal role in IL-1β responses during C. jejuni infection (Figure 4-14a). 

Interestingly, LPS stimulation alone induced ~50% of IL-1β levels as C. jejuni despite being 

an inflammasome-independent PAMP. Western blot analysis revealed the 31KDa pro-IL-1β 

was induced to comparable levels between the different inflammasome KO cells (Figure 

4-14b). A faint 17KDa band (corresponding to the bioactive cleaved IL-1β) was visible at 4h 

and 8h post-infection in WT and IPAF-/- but not in NALP3-/- and ASC-/- BMDCs, which  

(a) 
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Figure 4-13: ASC, NALP3, and IPAF do not alter bactericidal activity of BMDCs  

(a) Sequence alignment for C-terminal C. jejuni FlaA (top line) and S. typhimurium FliC 

(bottom line). Known critical residues for IPAF recognition are underlined (Miao et al. 

2010b) (b) 2 x10 5 WT (WT), ASC-/-, NALP3-/-, and IPAF-/- BMDCs were co-cultured with C. 

jejuni 11168H MOI 100 for 4h. Viable intracellular bacterial numbers were enumerated by 

the gentamicin protection assay. Values are means ± SEM. (c) 2 x10 5 WT (WT), ASC-/-, 

NALP3-/-, and IPAF-/- BMDCs were co-cultured with C. jejuni 11168H MOI 100 for 2h and 

incubated in media containing gentamicin for the indicated time-points. Viable intracellular 

bacterial numbers were enumerated by the gentamicin protection assay. Values are means 

± SEM. Survival values are given as a percentage of the bacterial numbers enumerated at 

the 0h time point. 
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(a) 

(b) 

Figure 4-14: ASC and NALP3 but not IPAF are essential for the IL-1β secretion in response 

to C. jejuni 

1 x106 WT, ASC-/-, IPAF-/-, and NALP3-/- BMDCs were co-cultured with C. jejuni 11168H at an 

MOI 100. (a) IL-1β secretion was analysed by ELISA 24h post-infection. Values are means ± 

SEM from four independent experiments. (b) Lysates were subjected to SDS-PAGE followed 

by Western blot analysis using an antibody that recognizes both the pro- and cleaved- form 

of IL-1β. Western blots are representative of three independent experiments. One-way 

ANOVA statistical analysis performed with Tukey post-test. No stars = not significant; * 

<0.05; ** <0.01; ***<0.001. 
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confirmed the ELISA data (Figure 4-14). As a control, the supernatants from stimulated 

inflammasome KO cells were analysed for the secretion of IL-10. Figure 4-15 shows that the 

inflammasome KO cells were capable of secreting IL-10 in response to C. jejuni to 

comparable levels as those seen with WT BMDCs. Collectively this data indicated that C. 

jejuni flagella did not engage with IPAF in mediating inflammasome activation. In contrast, 

a dependence on NALP3 and ASC was documented.  

4.5 C. jejuni activated BMDCs promote Th1 mediated immunity  

We and others have previously shown that C. jejuni promotes Th1 and Th17 responses in 

human and mouse DC/T cell co-culture systems (Edwards et al. 2010; Rathinam, Hoag, & 

Mansfield 2008). In this study the role and contribution of the flagella in the activation of T 

cell responses was elucidated (Figure 4-16). BMDCs were infected for 24h with WT, ∆flaA, 

or 100ng/mL C. jejuni LOS. After gentamicin treatment the BMDCs were co-cultured for 4 

days with freshly isolated naïve CD4+ T-cells from the spleen in the presence of activating 

anti-CD3 beads. Supernatants were subsequently analysed for the presence for the Th1 

cytokine, IFNγ, the Th2 cytokine, IL-4, and the Th-17 cytokine, IL-17A. In control 

experiments neither BMDCs nor T cells alone secreted significant levels of these cytokines 

(data not shown). Naïve T cells cultured with uninfected BMDCs secreted detectable levels 

of IFNγ, IL-4, and IL-17A (Figure 4-16). Interestingly, WT C. jejuni induced higher levels of 

IFNγ above the unstimulated control although this was not statistically significant. The 

flagella mutant ∆flaA induced similar levels of IFNγ as the WT strain, showing the induction 

of Th1 responses was independent of the flagella. This was largely expected as the levels of 

the Th1 polarising cytokine, IL-12 was similar between the WT and mutant strain (Figure 

3-6) although minor differences in the level of the maturation marker CD40 had been 

observed. Both WT and ∆flaA strains failed to induce IL-4 and IL-17A levels above the levels 

of the unstimulated control. IL-17A in the unstimulated control were high (>1000pg/mL) 

which may explain why the bacterium failed to induce IL-17A unlike the reported induction 

in the human co-culture system (Edwards et al. 2010). This data showed a propensity of C. 

jejuni-stimulated BMDCs to induce Th1 polarisation independent of the flagella.         

4.6 Discussion 

At the start of this study little was known as to how Campylobacter jejuni triggers TLRs to 

drive inflammatory responses in innate immune cells. It was interesting to find a complete 

dependence in BMDCs on TLR signalling for the induction of maturation markers and 

cytokine secretion in response to C. jejuni (Figure 4-3, Figure 4-2). The importance of TLR4  
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Figure 4-15: IPAF plays no role in the induction of IL-10 by C. jejuni flagella 

1 x106 WT, ASC-/-, and IPAF-/- BMDCs were co-cultured with C. jejuni 11168H at an MOI 100 

or LPS (1µg/mL) for 24h. IL-10 levels were assessed by ELISA. Values are means ± SEM from 

three independent experiments. One-way ANOVA statistical analysis performed with Tukey 

post-test. No stars = not significant.   
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Figure 4-16: C. jejuni drives Th1 responses independent of the flagella  

CD4+ naïve T-cells were co-cultured for 4 days with BMDCs pre-stimulated with WT C. 

jejuni, ∆flaA, or C. jejuni LOS (100ng/mL). (a) IFNγ (b) IL-4 (c) IL-17A levels were analysed by 

ELISA. Values are means ± SEM from four independent experiments.  One-way ANOVA 

statistical analysis performed with Tukey post-test. No stars = not significant. 

  

U
nst

im
ula

te
d

W
T C

. j
ej

uni 

Fla
A


LO

S

0

100

200

300

400

500

IF
N

 (

p
g

/m
L

)

U
nst

im
ula

te
d

W
T C

. j
ej

uni 

Fla
A


LO

S

0

20

40

60

IL
-4

 (
p

g
/m

L
)

U
nst

im
ula

te
d

W
T C

. j
ej

uni 

Fla
A


LO

S

0

500

1000

1500

2000

IL
-1

7
A

 (
p

g
/m

L
)

(a) (b)

(c)



129 
 

(MyD88- and TRIF-dependent) and TLR2 (MyD88-dependent) in the recognition of C. jejuni 

by BMDCs has since been reported (Rathinam et al. 2009). A dependency for both TLR4 and 

TLR2 signalling was required for the induction of both maturation markers and pro-

inflammatory cytokines, although TLR4 signalling was shown to have a greater impact than 

TLR2 in these pro-inflammatory responses. Interestingly, live C .jejuni is a poor stimulator of 

TLRs whereas as lysed bacteria are potent stimulators of TLR4 and TLR1/2/6 (de Zoete et al. 

2010). Differential dependency for either MyD88- or TRIF- signalling was observed for the 

secretion of various cytokines (Figure 4-3). The necessity of TLR signalling for the induction 

of IL-10 was previously unknown, and it was interesting to find a complete dependence on 

MyD88 signalling for its induction (Figure 4-3e). The ability of TLR4 to trigger both MyD88 

and TRIF signalling whereas other potential TLRs in the recognition of C. jejuni trigger only 

MyD88 signalling suggested that IL-10 induction is most likely TLR4-independent or solely 

driven by the TLR4-MyD88 axis. TLR2 signalling is known to be important for IL-10 secretion 

triggered by other pathogens or microbial stimuli (Manicassamy et al. 2009; Sing et al. 

2002). C. jejuni CPS has been implicated in the secretion of IL-6 by IECs via TLR2, although 

the purity of the CPS maybe questionable as complete removal of other microbial products 

such as LOS and lipoproteins during CPS purification remains challenging (Friis, Keelan, & 

Taylor 2009). The CPS isogenic mutant ∆kpsM did not influence IL-10 secretion negating a 

role for this bacterial structure in its regulation (Figure 3-4). The surface lipoprotein, JlpA, 

binds to IECs and triggers pro-inflammatory cytokine induction (Jin et al. 2003), and has 

been proposed to be the ligand for TLR2 recognition of C. jejuni (Rathinam et al. 2009).The 

shared dependency on TRIF- and MyD88-signalling for the induction of maturation markers 

and IL-12 family cytokines suggests TLR4 signalling may be important for their induction 

(Figure 4-2, Figure 4-3). This is supported by previous reports that TLR4-/- BMDCs have 

marked reduction in IL-12 secretion in response to C. jejuni and that the purified LOS drives 

IL-12 secretion from human monocyte-derived DCs (Hu et al. 2006; Rathinam et al. 2009). 

The use of BMDCs from specific TLR KO mice would elucidate specifically which TLR(s) are 

critical in the induction of IL-10 and whether they differ for IL-12 induction. It is interesting 

to hypothesise that C. jejuni has evolved to induce high IL-10 levels through the triggering 

of MyD88-dependent TLR signalling to dampen the immune system. Similar mechanisms 

are at play during Yesinia sp. and Helicobacter pylori/DC interactions (Hu et al. 2006;Sing et 

al. 2002; Wang et al. 2010). Although the acute inflammation seen in the majority of people 

infected with high doses of C. jejuni suggests this anti-inflammatory mechanism can be 

over-ridden by other pro-inflammatory stimuli (Hu et al. 2006; Tribble et al. 2010).   
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The ability of early (within 10mins post-infection) ERK signalling to occur in the absence of 

TLR-signals suggests alternative PRRs may be triggered in response to C. jejuni (Figure 4-4). 

However, this early ERK response varied between experiments and was not always 

observed (Figure 3-10). The strong activation of all three MAPK pathways between 1-2h 

post-infection was completely dependent on TLR signalling (Figure 4-4). The kinetics of 

activation suggested that the bacteria may need to be phagocytosed prior to initiation of 

TLR signals. This is supported by reports showing the inhibition of C. jejuni phagocytosis by 

chemical inhibitors blocks the secretion of pro-inflammatory cytokines (Rathinam et al. 

2008). Additionally, TLR4 and TLR2 are expressed in the endosomal compartments of 

human DCs and not on the cell surface (Uronen-Hansson et al. 2004).  MyD88-dependent 

signalling appears to have a greater role in MAPK activation than TRIF-dependent signalling 

(Figure 4-4). For IL-10 induction there is an interesting correlation between the necessities 

of MyD88 signalling, MAPK signalling, and the ability of MyD88-dependent events to drive 

MAPK activation (Figure 3-13, Figure 4-3, Figure 4-4). Conversely, IL-12 induction is not 

influenced by MAPK inhibition, is both TRIF- and MyD88-dependent, and TRIF signalling 

does not influence MAPK activation. It is possible that a particular TLR, independent of 

TRIF, triggers MAPK activation and subsequently IL-10; whereas as TLR4 activation triggers 

NF-κB activation and subsequent production of IL-12 related cytokines.  Interestingly, TLR2 

and TLR4 mediated MyD88-dependent signalling requires the adaptor molecule Mal, which 

via p38 activates the transcription factor CREB leading to transcription and subsequent 

expression of IL-10 (Mellett et al. 2011).  

The finding that the modification of C. jejuni flagellin protein, FlaA, with a derivative of Pse 

is important for the induction of high levels of IL-10 suggested a possible role of 

carbohydrate recognition receptors in C. jejuni-BMDC interactions (Figure 3-17). In this 

study we found the ability of WT C. jejuni strain 11168H to bind to Siglec-10 to be specific, 

which was not previously thought (Avril et al. 2006). Siglec-10 bound to C. jejuni flagella 

Pse5Ac7Am structures in a manner independent of the sialic acid structures on the LOS 

(Figure 4-12). It is tempting to hypothesise that the interaction between Pse5Ac7Am 

structures on the flagella is a pathogen driven strategy to manipulate host antimicrobial 

responses, including effects on anti-inflammatory cytokines such as IL-10. This interaction 

allows novel means to target and modulate TLR signalling, a signalling pathway critical for 

IL-10 expression (Figure 4-3). Previous reports have implicated Siglecs in host IL-10 

immunity. Overexpression of Siglec-9 and Siglec-5 in the macrophage cell-lines, RAW264 

and THP-1, followed by TLR stimulation results in increased  IL-10  production with a 
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parallel decrease in TNF-α (Ando et al. 2008). Tyrosine residues in the intracellular domain 

of Siglec-9 are critical for the recruitment of downstream signalling molecules SHP-1 and 

SHP-2, events involved in immune modulation.  Siglecs are largely immunomodulatory and 

have been hypothesised to be important in distinguishing “danger-associated” versus 

“pathogen-associated” signals (Chen et al. 2009). The ability of pathogens to express sialic 

acid and engage Siglecs to dampen immune responses via molecular mimicry can be 

considered an evolutionary advantage, as demonstrated by the ability of group B 

streptococcus to engage Siglec-9 on neutrophils and reduce their oxidative burst 

capabilities (Carlin et al.  2009b). It has been hypothesised, to counterbalance the ability of 

particular pathogens to engage Siglecs and dampen immune responses, paired receptors 

have evolved which are composed of the same extracellular domain but have altered the 

intracellular domain and are therefore able to activate signalling pathways (Cao and 

Crocker 2011a).  

As yet there are no reports investigating the influence of Siglec engagement on MAPK 

activation, therefore whether the altered activation of p38 by the flagella mutant was 

caused by its inability to bind to Siglec-10 requires clarification. There is however 

precedence in the literature as ligation of the C-type lectin receptor, Dendritic-cell-

associated C-type lectin-2 (DCAL2; which contains an ITIM) modulates MAPK activation and 

IL-10 production (Chen et al. 2006). Analysis of MAPK activation in either specific Siglec KO 

BMDCs or Siglec overexpressing DCs would aid in determining whether Siglec engagement 

can alter these signalling pathways. The ability of Siglec-E to dampen TLR-induced pro-

inflammatory cytokine induction in antibody cross-linking experiments occurs via 

dampening of NF-κB (Boyd et al. 2009). In addition, engagement of CD24 and Siglec-

G/siglec-10 to the DAMP high mobility group box 1 (HMGB1) leads to a decrease in pro-

inflammatory responses, again via NF-κB regulation (Chen et al. 2009). How Siglec and 

other carbohydrate receptors intercept NF-κB and MAPKs in fine tuning host immunity is 

an emerging area of host-pathogen research.  

In addition to the binding of sialic acid in the sialic acid binding pocket, Siglecs are able to 

bind other ligands on different parts of the receptor (Carlin et al. 2009a; Kivi et al. 2009). In 

the present study we did not undertake experiments to define if the Pse5Ac7Am structure 

of C. jejuni flagella binds directly to the sialic acid binding site of Siglec-10. The first partial 

crystal structure of a Siglec-family member, the N-terminal domain Sialoadhesin, revealed 

critical interactions in the carbohydrate binding domain with its ligand, 3-sialylactose (May 
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et al. 1998). Hydrogen bonds are predicted to form between the hydroxyl groups on the 8th 

and 9th carbon as well as the 4th carbon of the pyranose ring and amide group of the N-

acetyl group. The carboxylate group is also predicted to form salt bridges. The structure of 

pseudaminic acid is very similar to N-acetyl neuraminic acid (sialic acid) (Figure 1-4). The 

carboxylate group, hydroxyl groups on the 4th and 8th carbon, and amide group on the 5th 

carbon are all conserved. Siglecs have varying specificities for sialic acid structures, with 

linkage conformation and underlying carbohydrate backbone structure playing critical roles 

in their ligand specificity. As yet, the structure of Siglec-G and Siglec-10 is unknown; 

therefore the potential binding of Pse5Ac7Am to these receptors are a matter for future 

research.  

In the monocyte/macrophage cell line, THP-1, C. jejuni is able to induce high levels of IL-1β 

in the range of 2000pg/mL 24h post-infection (Siegesmund et al. 2004). In contrast, levels 

of IL-1β induced by BMDCs in responses to C. jejuni 24h post-infection were far lower, in 

the range of 200-400pg/mL (Figure 4-14a). The disparity between the levels of IL-1β in the 

different cell types may be due to differential regulation of caspase-1. Monocytes have 

been shown to constitutively activate capase-1 and therefore only require a TLR-stimulus 

to induce high levels of IL-1β (Netea et al. 2009). Conversely, macrophages and DCs do not 

express constitutively active caspase-1, therefore in addition to a TLR-stimulus which drives 

the production of pro-IL-1β, a second signal such as adenosine triphosphate (ATP) or 

muramyl dipeptide (MDP) is required to activate the inflammasome which results in 

caspase-1 cleavage and the eventual processing of IL-1β (Mariathasan et al. 2006). The low 

level of IL-1β in C. jejuni stimulated BMDCs despite the use of high MOIs suggests that C. 

jejuni is a poor inducer of inflammasome function. LPS stimulation reportedly does not 

induce IL-1β secretion in DCs due to a lack of constitutively activated caspase-1, therefore it 

is interesting to find LPS stimulation induces 50% of the levels of IL-1β that C. jejuni induces 

(Netea et al. 2009). One explanation is the possible contamination of the LPS with other 

microbial products that could act as the second signal for caspase-1 cleavage, such as MDP 

which activates NALP3. Alternatively, there may be minimal constitutive activation of 

capase-1 creating a “leaky system” that allows the activation of TLRs alone to drive 

secretion of minimal levels of mature IL-1β. Interestingly, both NALP3 and the more 

broadly used adaptor protein ASC were necessary for the induction of IL-1β from both the 

C. jejuni- and LPS-stimulated BMDCs. The necessity of this receptor and adaptor molecule 

has already been reported in the constitutive activation of caspase-1 in monocytes, 
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therefore neither of the possible explanation for the induction of IL-1β by LPS can be 

eliminated (Netea et al. 2009).  

Despite the flagellin protein, FlaA, sharing many “critical” amino acids that have been 

identified in the activation of IPAF, C. jejuni did not require IPAF in the induction of IL-1β 

(Figure 4-14a and b). The activation of IPAF by the flagellin proteins of other pathogens 

requires the translocation of the flagellin monomers directly into the cytosol, which is 

achieved via a type III secretion apparatus or artificially in vitro by transfection of the 

monomers (Sun et al. 2007). As IPAF is dispensable for the secretion of IL-1β by C. jejuni it is 

likely that the bacterium does not actively secrete flagellin monomers into the BMDC 

cytosol. There are two possible explanations for the reduced levels of IL-1β seen with the 

flagellin mutant, ∆flaA. Firstly, differential induction of pro-IL-1β between the WT and 

flagellin mutant may occur. Alternatively, the ability of the motility-deficient bacterium to 

enter the cytosol triggering ASC- and NALP3-dependent inflammasome activation may be 

altered; although there is currently no evidence which proves C. jejuni is able to enter the 

cytosol in DCs.  

C. jejuni-stimulated BMDCs were able to induce a strong IFNγ responses in T-cells (Edwards 

et al. 2010;Rathinam, Hoag, & Mansfield 2008), independent of the flagella (Figure 4-16a), 

but did not induce significant levels of IL-4. Strong IFNγ responses that are specific to C. 

jejuni antigens correlate with protection against re-infection, which suggests Th1 responses 

are critical in the clearance of the pathogen and in limiting infection to an acute disease 

(Tribble et al. 2010). Interestingly, the ability of H. pylori-stimulated DCs to induce 

regulatory T cells (Treg) skewing is via its ability to induce high levels of IL-10 and TGF-β 

(Kao et al. 2010), therefore it would be interesting to analyse the ability of C. jejuni to 

induce Tregs in the future.  
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Chapter 5.  

Structural Analyses of C. jejuni 

Lipooligosaccharide from Different 

Phylogenetic Clades 
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5.1 Background 

There are multiple reservoirs of C. jejuni that include not only livestock but also 

environmental or non-livestock sources such as contaminated water supplies and crops 

(Gardner et al. 2011; Kemp et al. 2005). Despite the microaerophillic nature favoured by C. 

jejuni, the bacteria can survive and grow in water in laboratory tests which suggests that C. 

jejuni may be able to adapt to ecological niches outside a mammalian or avian host 

(Tatchou-Nyamsi-Konig et al. 2007). The genetic adaptation to specific ecological niches by 

C. jejuni is beginning to be appreciated. Wren and colleagues investigated the phylogenetic 

relationship of 111 different C. jejuni strains isolated from either asymptomatic human 

carriers, human clinical isolates, livestock (chicken, bovine, and ovine) and environmental 

sources and the authors found a phylogenetic divide between livestock and environmental 

sources (Champion et al. 2005). Interestingly, the human clinical isolates are spread across 

the two phylogenetic clades suggesting that different genetic necessities promote livestock 

colonisation versus those that cause enteritis in humans. A key genetic locus that 

distinguishes the two phylogenetic clades includes the genes involved in the legionaminic 

acid (Leg) biosynthesis pathway.  The deletion of this genetic cluster leads to a reduction in 

C. jejuni colonisation in chickens (Howard et al. 2009). However, certain chicken isolates 

lack this genetic cluster suggesting that multiple genetic loci are likely to be important in 

livestock colonisation.  

The LOS structure varies widely amongst C. jejuni strains. The major variation lies in the 

outer core region of the oligosaccharide (OS) (Figure 1-2) (Dorrell et al. 2001), although 

diversity in the phosphorylation and number of amide linkages of the lipid A also exist 

(Figure 5-1) (Szymanski et al. 2003). Further, the level of phosphorylation and the 

abundance of amide linkages can vary between growths of the same C. jejuni strain 

suggesting that LOS structure may actively respond to the bacteria’s immediate 

environment (e.g. laboratory culture broth versus host nutritional status plus additional 

impact of the host microbial composition); such dynamic changes may promote virulence. 

In addition to environment-driven LOS modification(s), genetic variation in the C. jejuni LOS 

locus is also documented. In the present study we wished to test the hypothesis that 

structural variation in the LOS not only lends to differential cross-talk with the host innate 

immune system but this moiety may also contribute to defining the phylogenetic 

separation of C. jejuni strains.  
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Figure 5-1 C. jejuni Lipid A structure  

Hexacylated lipid A bearing (a) two phosphate and two phosphoethanolamine residues. 

Acyl chains are linked by either (b) ester (R = O) or amide (R = N) bonds.   

5.2      Isolation of the lipooligosaccharide (LOS) moiety from C. 

jejuni strains 

To assess whether the LOS structure is important in the distinction of the two phylogenetic 

clades, the LOS moiety from 15 C. jejuni strains (7 and 8 strains from livestock (including 

reference strain 11168H) and non-livestock (environmental) clades respectively) were 

purified (Table 5-1). Of the 7 livestock-associated strains, 3 were human clinical isolates 

(patients presenting with diarrhoea or bloody diarrhoea), 2 were from asymptomatic 

carriers, and 2 were from colonised livestock. Of the 8 environment-associated strains 4 

were human clinical isolates (patients presenting with diarrhoea or bloody diarrhoea) and 4 

were from asymptomatic carriers.  

To perform LOS structure and functional analyses, 1L broth cultures were grown for each 

strain under micro-aerophillic conditions for 24-48h. LOS was isolated using the hot-phenol 

method of extraction (Chapter 2.9.1). Yields of between 2-15mg were achieved and were 

quantified on a microbalance. Purity was assessed by SDS-PAGE and subsequent silver 

staining (Figure 5-2). High purity was achieved as no other bands were detected. The size of 

the LOS differed between the various preparations, suggesting that structural differences 

may occur between the strains. To assess these possible differences, Matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) analysis was 
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performed. The high purity suggested that the extracted LOS could be used directly without 

any further purification for structure (this chapter) and functional studies (Chapter 6). 

5.3 MALDI-TOF analysis of O-Deacylated LOS  

MALDI-TOF MS analysis allowed structural determination of the 15 LOSs’ isolated. MALDI-

TOF MS was performed on O-deacylated LOS samples to analyse lipid A amide linkages and 

determine the OS composition (described here). MALDI-TOF MS was also performed on the 

intact LOS to analyse lipid A phosphorylation status (Chapter 5.5).   Sample preparation and 

~80% of the MALDI-TOF spectra acquisitions’ were conducted by or under the direct 

guidance of Dr. C.  John (UCSF, USA). The remaining data was obtained by Dr. John.  

Removal of the O-linked acyl chains (O-deacylation) of the lipid A backbone aided MALDI-

TOF analysis, in particular for the acquisition of detailed spectra for the full length species 

(lipid A + OS). C. jejuni is known to have varying numbers of amide and ester bonds linking 

the acyl chains to the lipid A backbone (Figure 5-1) (Van Mourik et al. 2010). The sugar 

components of the disaccharide lipid A backbone are either 2,3-diamino-2,3-dideoxy-D-

glucose  (GlcN3N; 2 amide linkages) or D-glucosamine (GlcN; 1 amide linkage). Varying 

amounts of GlcN3N-GlcN3N, GlcN-GlcN3N, and GlcN-GlcN lipid A backbones have been 

observed amongst C. jejuni strains, although a comparison of abundance of these linkages 

from different strains has not been performed (Szymanski et al. 2003). As the O-deacylation 

treatment removes only the acyl chains that are linked via ester bonds (not amide bonds), 

it was possible to quantify the relative abundance of each disaccharide composition 

(GlcN3N-GlcN3N, GlcN-GlcN3N, and GlcN-GlcN). However, O-deacylation treatment also 

removed all O-linked amino acids and O-linked acyl modifications of the OS in addition to 

removing PEA residues on the lipid A core; therefore MALDI-TOF analysis of the native LOS 

was also performed. 
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Table 5-1: C. jejuni strains used in this study 

Strain numbers, phylogenetic clade, and clinical presentation for each strain 

 

Strain  Phylogenetic Clade  

Environmental (E) or Livestock (L) 

Clinical Presentation 

43205 E Bloody Diarrhoea 

32787 E Asymptomatic 

31481 E Asymptomatic 

56519 E Bloody Diarrhoea 

64555 E Bloody Diarrhoea 

33106 E Asymptomatic 

33084 E Asymptomatic 

40917 E Bloody Diarrhoea 

31485 L Asymptomatic 

11168H L Diarrhoea 

45557 L Bloody Diarrhoea 

KJShpSm4 

 

 

L Colonised Livestock 

56282 L Diarrhoea 

32799 L Asymptomatic 

KJCattle8 L Colonised Livestock 
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Figure 5-2: Silver stain of purified LOS from 15 different Campylobacter jejuni strains 

1µg of purified LOS was separated by SDS-PAGE and subsequently silver-stained using silver 

nitrate.   
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To O-deacylate the LOS, ~300µg of purified LOS was treated with anhydrous hydrazine. 

Prior to addition to the matrix, O-deacylated LOS were desalted and added to a 2, 5-

dihydroxybenzoic acid (DHB) matrix and subsequently analysed by MALDI-TOF in the 

negative ion mode (Chapter 2.9.3). Figure 5-3 and Figure 5-4 show a representative spectra 

for the O-deacylated LOS from each strain of the environmental and livestock clade 

respectively. Table 5-2 shows the calculated masses for the different lipid A species 

observed. The presence of GlcN3N-GlcN3N (four amide linkages; m/z 1402.6 Da) and 

GlcN3N-GlcN (three amide linkages; m/z 1177.2 Da) lipid A backbone containing two 

phosphate groups is seen for all of the LOSs’ analysed. The presence of lipid A containing 

only two amide linkages GlcN-GlcN (m/z 951.8 Da) was detected in LOS from environmental 

strains 64555 and 40917 (Figure 5-3f and h) and  livestock strain KJcattle8  (Figure 5-4f) and 

at far lower abundance (Table 5-3). Despite increasing the length of incubation of the LOS 

with anhydrous hydrazine from 20mins to 2h not all of the O-linked fatty acid chains were 

removed (under O-deacylated; m/z 1641.0 and 1415.6 Da of the GlcN3N-GlcN3N and 

GlcN3N-GlcN species respectively). Peaks were detected for masses corresponding to the 

loss of a phosphate group and one water molecule (-98Da; m/z 1304.6 and 1079.2; under 

O-deacylated m/z 1543.0 and 1317.6). The loss of the water in conjunction with the 

phosphate, and the lack of peaks showing loss of water alone, suggested these species 

were generated by hydrolysis of a phosphate group during the MALDI-TOF analysis and did 

not correspond to the presence of a monophosphorylated lipid A backbone. The lack of 

observable peaks for monophosphorylated species (m/z 1322.6, 1097.2, and 871.8 Da) 

agreed with this hypothesis. Peaks at m/z 1374.5 and 1149.2 Da corresponded to GlcN3N-

GlcN3N and GlcN3N-GlcN backbones containing a 14 carbon (C14) instead of a 16 carbon 

(C16) acyl chain respectively (under O-deacylated m/z 1612.9, 1387.6, and 1162.2).   
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Figure 5-3: MALDI-TOF analysis of O-deacylated environmental phylogenetic clade LOS 

Representative spectra from at least two independently acquired spectra for O-deacylated 

LOS from environmental strains (a) 43205 (b) 32787 (c) 31481 (d) 56519  
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Figure 5-3: MALDI-TOF analysis of O-deacylated environmental phylogenetic clade LOS 

Representative spectra from at least two independently acquired spectra for O-deacylated 

LOS from environmental strains (e) 33106 (f) 64555 (g) 33084 (h) 40917.  
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Figure 5-4: MALDI-TOF analysis of O-deacylated livestock phylogenetic clade LOS 

Representative spectra from at least two independently acquired spectra for O-deacylated 

LOS from livestock strains (a) 31485 (b) 45557 (c) KJShpSm4 (d) 56282 (e) 32799 (f) 

KJcattle8 (g) 11168H  
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Figure 5-4: MALDI-TOF analysis of O-deacylated livestock phylogenetic clade LOS 

Representative spectra from at least two independently acquired spectra for O-deacylated 

LOS from livestock strains (e) 32799 (f) KJcattle8 (g) 11168H  
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O-Deacylated lipid A Structure Calculated mass (M-H)- 

(Da) 

GlcN3N-GlcN3N-2P 1402.6 

GlcN-GlcN3N-2P 1177.2 

GlcN-GlcN-2P 951.8 

GlcN3N-GlcN3N-2P (C14) 1374.5 

GlcN-GlcN3N-2P (C14) 1149.2 

GlcN-GlcN-2P (C14) 923.8 

GlcN3N-GlcN3N-2P (minus P) 1304.6 

GlcN-GlcN3N-2P (minus P) 1079.2 

GlcN-GlcN-2P (minus P) 853.8 

GlcN3N-GlcN3N-2P (under O-deacylated) 1641.0 

GlcN-GlcN3N-2P (under O-deacylated) 1415.6 

GlcN-GlcN-2P (under O-deacylated) 1191.2 

 

 

 

Table 5-2: MALDI-TOF lipid A species for O-deacylated C. jejuni LOS  

Calculated mass for the described O-deacylated structures. Lipid A composed of two 2,3-

diamino-2,3-dideoxy-D-glucose sugars  (GlcN3N-GlcN3N; 4 amide linkages), two D-

glucosamine sugars (GlcN-GlcN; 2 amide linkage); or a combination of one D-glucosamine  

and one 2,3-diamino-2,3-dideoxy-D-glucose sugar (GlcN-GlcN3N; 3 amide linkages). P = 

phosphate group; C14 = 14 carbon long acyl chain instead of one 16 carbon long acyl chain. 
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The proportion of the GlcN3N-GlcN3N, GlcN3N-GlcN, and GlcN-GlcN backbone in the LOS 

for each species was calculated by combining the relative abundance of all the peaks 

relating to number of amide linkages from two independent spectra (Table 5-3).  For the 

majority of the strains analysed, GlcN3N-GlcN was the most abundant disaccharide 

backbone observed. Although there was a wide variation in the abundance of four amide 

linkages (GlcN3N-GlcN3N; range 26.1 – 73.7%, mean 33.5%, standard deviation 14.7%), this 

did not correlate with the phylogenetic clade or clinical presentation of each strain (Figure 

5-5). This data highlighted that variation in the relative abundance of amide and ester 

linkages of the acyl chains in the lipid A backbone of C. jejuni LOS was independent of the 

ecological niche of the corresponding strain. Additionally, the relative abundance of amide 

linkages in the lipid A backbone did not account for asymptomatic carriage of C. jejuni.  

In addition to the acyl linkage analysis, the composition of the OS for each strain was 

calculated from the O-deacylated spectra as the resolution for the larger masses was higher 

than for the intact spectra (compare Figure 5-3 and Figure 5-4 to Figure 5-10 and Figure 

5-11). The spectra for environmental strain, 31481, showed a peak at m/z 1679.9 Da which 

is consistent with an OS composed of KDO2PEAHep2Hex2HexNAc2; peaks at 1633.3 and 

1475.5 corresponded to the loss of CO2 (-44Da) and KDO (-220Da) from the OS respectively 

(Figure 5-3c). Full length species at m/z 2855.9Da and 3081.6Da corresponded to the OS 

plus the GlcN3N-GlcN and GlcN3N-GlcN3N backbone respectively. Strain 64555 had a peak 

at m/z 2159.7 Da corresponding to an OS structure of KDO2Hep2Hex7HexNAc1 (Figure 5-3f). 

Strain 33106 had a peak at m/z 1725.3 Da corresponding to an OS structure of 

KDO2PEAHep2Hex3; an additional peak at 1927.9 corresponded to an additional HexNAc1 

residue on the OS (Figure 5-3e). Peaks at m/z 2903.6, 3141.8 and 3368.9 Da corresponded 

to the KDO2PEAHep2Hex3 OS with the addition of GlcN3N-GlcN, under O-deacylated 

GlcN3N-GlcN, and under O-deacylated GlcN3N-GlcN3N lipid A backbone respectively. No 

peaks for the OS alone were observed for strain 33084 (Figure 5-3g). Peaks at m/z 3195.9 

Da corresponded to a GlcN3N-GlcN lipid A backbone with the addition of a 

KDO2PEAHep2Hex6NeuAc2 OS. Peaks at m/z 2903.8 and 2610.4 Da corresponded to the loss 

of one and two sialic acid residues respectively. The OS peak for strain 40917 is m/z 2485.2 

Da corresponding to KDO2PEAHep2Hex5HexNAc2NeuAc1, and loss of KDO at m/z 2265.7 Da 

Figure 5-3h). Full length peaks at m/z 3438.0, 3663.2, 3889.5, and 3902.0 Da corresponded 

to the OS plus GlcN-GlcN, GlcN3N-GlcN, GlcN3N-GlcN3N, and under O-deacylated GlcN3N-

GlcN lipid A backbone respectively. The peaks observed in the OS and full-length range for 

strains 43205, 32787, and 56519 did not correspond to any predicted carbohydrate  
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Table 5-3: Relative abundance of disaccharide backbone composition (amide linkages) for 

each strain 

The relative abundance of GlcN3N-GlcN3N, GlcN3N-GlcN, and GlcN-GlcN lipid A backbone 

was calculated from two individual spectra for each strain based on the area under the 

peaks of the masses from Table 0-2. E = environmental strain; L = livestock strain; BD = 

bloody diarrhoea; D = diarrhoea; A = asymptomatic; CL = colonised livestock.  

  

Strain Phylogenetic 

clade 

Clinical 

Presentation 

GlcN3N-GlcN3N 

(%) 

GlcN3N-GlcN 

(%) 

GlcN-GlcN 

%) 43205 E BD 19.6 77.8 2.7 

32787 E A 35.0 65.0 0.0 

31481 E A 39.5 60.5 0.0 

56519 E BD 48.4 51.6 0.0 

64555 E BD 27.8 70.8 1.5 

33106 E A 38.7 61.3 0.0 

33084 E A 26.2 72.6 1.2 

40917 E BD 13.7 77.1 9.2 

31485 L A 39.6 60.4 0.0 

11168H L D 73.7 26.3 0.0 

45557 L BD 32.8 67.2 0.0 

KJShpSm4 L CL 37.7 58.7 3.5 

56282 L D 31.3 68.2 0.5 

32799 L A 20.3 79.2 0.5 

KJCattle8 L CL 18.3 74.5 7.2 
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Figure 5-5: No correlation between the phylogenetic clade or clinical presentation of C. 

jejuni strains and the abundance of four amide linkages on the LOS 

The relative abundance of GlcN3N-GlcN3N (four amide linkages) lipid A backbone was 

calculated from two individual spectra for each strain based on the area under the peaks of 

the masses from Table 0-2. The relative abundances were plotted against (a) the 

phylogenetic clade of each strain (b) the clinical presentation of each strain. 
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composition, therefore higher resolution MALDI-TOF analysis was performed by Dr C. John 

at UCSF on intact LOS to obtain OS structural details and are described in Section 5.5.  

Livestock strain, 31485, had a peak at m/z 2415.4 correlating with an OS composed of 

KDO2PEAHep2Hex6HexNAc1NeuAc1 (Figure 5-4a). Peaks at m/z 3592.1, 3818.5, and 3828.8 

corresponded to the OS joined to a lipid A backbone GlcN3N-GlcN, GlcN3N-GlcN3N, and 

under O-deacylated GlcN3N-GlcN respectively. Strains 45557 and 11168H had the same OS 

composition as 31485, with peaks observed at m/z 2414.3 and 2414.8 Da respectively 

(Figure 5-4b and g). Peaks at m/z 3593.6 and 3819.0 Da for strain 45557, and m/z 3594.6 

and 3818.2 Da for strain 11168H, corresponded to the full length O-deacylated structures 

with a GlcN3N-GlcN and GlcN3N-GlcN3N respectively. The OS peak for strain KJShpSm4 was 

m/z 2252.0 Da, which matched KDO2PEAHep2Hex5HexNAc1NeuAc1 (Figure 5-4c), with 

corresponding full length peaks at m/z 3429.6 and 3654.7 Da for the OS plus a lipid A 

backbone composed of GlcN3N-GlcN and GlcN3N-GlcN3N respectively. Both strains 56282 

and 32799 have an OS composed of KDO2PEAHep2Hex4HexNAc1NeuAc2 shown at peaks m/z 

2382.8 and 2382.7 Da respectively (Figure 5-4d and e). Full length structures composing the 

OS with GlcN3N-GlcN lipid A backbone were seen at peaks m/z 3561.0 Da for strain 56282 

and 3559.3 Da for strain 32799, with loss of one sialic residues at m/z 3269.0 Da and 3268.0 

Da respectively. In addition, strain 32799 had peaks at m/z 2977.0 and 3785.0 Da 

corresponding to the loss of two sialic acid residues and the full length OS with a GlcN3N-

GlcN3N backbone respectively. Strain, KJCattle8 had an OS composed of 

KDO2PEAHep2Hex2HexNAc2NeuAc1 observed m/z 1968.3 Da, and full length m/z 3145.0 Da 

with GlcN3N-GlcN lipid A backbone (Figure 5-4f). 

MALDI-TOF analysis highlighted a wide variation in the OS structure of the 15 different 

strains (Table 5-4). Most strains were predicted to contain the inner core OS KDO2Hep2PEA. 

All strains bar 33084, 32787, 56519 contained a HexNAc residue. The OS structure of all 15 

strains was predicted to contain between 2 and 6 hexose residues. The presence of sialic 

acid in the OS was predicted for 10 out of the 15 strains based on the MS data. Comparison 

of the LOS MALDI-TOF data highlighted the presence of sialic acid as a possible 

distinguishing feature between the clades as at least one sialic acid residue was present in 

all 7 livestock strains tested; in contrast only 3 out 8 environmental strains were sialic acid 

positive.  We next confirmed the presence of sialic acid synthesis genes (sialic acid synthase 

(neuB1), sialic acid transferase (cst) and sialic-acid O-acetyl transferase (SOAT) genes).  
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Table 5-4: C. jejuni LOS OS structures predicted from O-deacylated spectra  

Calculated and observed average masses for the subsequent predicted structures for the 

OS portions of the 15 strains, based on peaks in the OS and full length section of a 

minimum of two individual O-deacylated spectra for each strain. Hex = hexose; PEA = 

phosphoethanolamine; Hep = heptose; KDO = 3-Deoxy-D-manno-oct-2-ulosonic acid ; 

HexNAc = N-acetyl hexosamine ; NeuAc = N-acetyl neuraminic acid (sialic acid). * denotes 

exact masses (performed by high resolution MALDI-TOF on intact species 

  

 
Strain 

 
Clade 

 
Predicted carbohydrate structure 

Predicted 
mass (M-H)- 
(Da) 

Observed 
mass (M-H)- 
(Da) 

11168H L KDO2 PEA Hep2 Hex6 HexNAc1NeuAc1 2414.1 2414.8 

45557 L KDO2 PEA Hep2 Hex6 HexNAc1NeuAc1 2414.1 2414.3 

31485 L KDO2 PEA Hep2 Hex6 HexNAc1NeuAc1 2414.1 2414.6 

32799 L KDO2 PEA Hep2 Hex4 HexNAc1NeuAc2 2381.0 2382.5 

KJShpsm4 L KDO2 PEA Hep2 Hex5 HexNAc1NeuAc1 2251.9 2252.0 

KJCattle8 L KDO2 PEA Hep2 Hex2 HexNAc2NeuAc1 1968.7 1968.3 

56282 L KDO2 PEA Hep2 Hex4 HexNAc1NeuAc2 2381.0 2382.8 

33106 E KDO2 PEA Hep2 Hex3 HexNAc1NeuAc1 1926.9 1927.9 

33084 E KDO2 PEA Hep2 Hex6 NeuAc2 2015.7 2017.5 

40917 E KDO2 PEA Hep2 Hex5 HexNAc2NeuAc1 2485.1 2485.5 

31481 E KDO2 PEA Hep2 Hex2 HexNAc2 1677.4 1676.9 

56519 E KDO2 PEA Hep2 Hex7 P2 OAc 2282.6* 2282.1* 

32787 E KDO2 PEA Hep2 Hex7 P2 OAc 2282.6* 2282.8* 

64555 E KDO2 Hep2 Hex7 HexNAc1 2161.9 2159.7 

43205 E KDO2 P Hep2 Hex8 HexNAc1 2402.7* 2402.7* 
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5.4 Genetic analysis of sialic acid-synthesis genes 

The sequence of the sialic acid synthase gene in the LOS locus, neuB1, varies widely 

between LOS classes A and B compared to C (Parker et al. 2005). The identity between 

11168H neuB1 (class C) and 81-176 (class B) is 76.7% (EMBOSS Needle: Pairwise Sequence 

Alignment Software). A previous microarray study utilised primers based on the genomic 

sequence of strain 11168H, therefore the lack of identity between the difference LOS 

classes most likely accounts for why only 4 of the 15 strains were reported to be positive 

for the neuB1 gene (Champion et al. 2005) (Dr O Gundogdu, LSHTM, personal 

communication). Using primers designed to anneal to the homologous regions shared 

between the neuB1 genes from the various LOS classes, PCR analysis was performed on 

whole genomic DNA extracted from C. jejuni strains.  10 strains predicted to have sialic acid 

in the LOS by MS were also found to be positive for the presence of the neuB1 gene (Figure 

5-6, top band). In addition, primers designed by Parker and colleagues (Parker et al. 2005) 

were also used to distinguish strains on the basis of the presence of the neuB1 and sialic 

acid transferase (cst) genes from classes A and B from class C (Figure 5-6). Out of the 10 

strains positive for the neuB1 gene, 5 were positive for both class A & B neuB1 and cst 

genes, and the others were positive for class C neuB1 and cst genes. The four strains that 

were positive according to Champion et al. all belonged to class C, confirming that the 

observed low degree of identity in the neuB1 gene may be responsible for the false 

negative data for sialic acid synthase genes in some of the strains. Interestingly, the 5 

strains that were negative for sialic synthesis genes (for all sets of primers utilised) were 

from the environmental clade (5/8). Primers annealing to a gene present in the LOS locus of 

all C. jejuni strains, htrB, was used as a positive control.  Taken together, gene analysis and 

the MS data indicated that compared to the environmental strains, a higher proportion of 

the livestock strains LOS contained the sialic acid moiety.  

To add greater weight to the observations noted above, the presence of sialic acid 

synthesis genes was sought in a further 12 strains from the environmental clade and 14 

strains from the livestock clade. Of the 12 environmental strains analysed, 6 were positive 

for the neuB1 gene (Figure 5-7). Of the 14 livestock strains analysed all 14 were positive for 

the neuB1 gene (Figure 5-8). Therefore, overall 45% (9/20) of all environmental-associated 

clade strains contained the neuB1 gene, compared to 100% (21/21) for the livestock-

associated clade. Of the sialic acid positive strains, 78% for the environmental strains 

belonged to class A or B compared to 43% for the livestock clade. All strains analysed from 

the environmental clade were human isolates. 10 of the 21 livestock strains were human  
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Figure 5-6: Detection of sialic acid synthesis genes in Campylobacter jejuni environmental 

and livestock strains 

Sialic acid synthesis genes were amplified by PCR and visualised by agarose gel 

electrophoresis with gel-red staining. Primers utilised are described in the text. 30 PCR 

cycles were performed at an annealing temperature of 52oC for orf 7ab (neuB1 ab), orf 7c 

(neuB1c), orf 8ab (cst ab), and orf 8c (cst c); neuB1 and htrB at 55oC.  
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Figure 5-7: Detection of Sialic acid synthesis genes in environmental Campylobacter jejuni 

strains 

Sialic acid synthesis genes were amplified by PCR and visualised by agarose gel 

electrophoresis with gel-red staining. 30 PCR cycles were performed at an annealing 

temperature of 52oC for orf 7ab (neuB1 ab), orf 7c (neuB1c), orf 8ab (cst ab), and orf 8c (cst 

c); neuB1 and htrB at 55oC. 
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Figure 5-8: Detection of sialic acid synthesis genes in livestock Campylobacter jejuni 

strains 

Sialic acid synthesis genes were amplified by PCR and visualised by agarose gel 

electrophoresis with gel-red staining. 30 PCR cycles were performed at an annealing 

temperature of 52oC for orf 7ab (neuB1 ab), orf 7c (neuB1c), orf 8ab (cst ab), and orf 8c (cst 

c); neuB1 and htrB at 55oC. 

 

 



155 
 

isolates, for which 40% were classes A or B; the other 11 were from colonised livestock for 

which 45% were classes A or B. Of the 6 strains isolated from asymptomatic carriers 33% 

did not contain sialic-acid synthesis genes, 50% were positive for class A or B, and 17% 

were positive for class C. No correlation between the asymptomatic strains and the 

presence/absence of sialic acid synthesis genes was found. The expanded PCR analysis 

confirmed the presence of sialic acid synthesis genes in the LOS locus as a distinguishing 

feature between the two phylogenetic clades, but not for asymptomatic carriage of C. 

jejuni.        

Champion and colleagues suggested a possible correlation between strains that contain the 

sialic acid synthesis genes and the presence of the two-domain containing Cj1135 (lgtF), a 

gene predicted to function in the addition of two glucose residues to the two heptose 

residues in the core OS (Champion et al. 2005; Parker et al. 2005). Strains that lack the two-

domain lgtF carry an lgtF gene that encodes a one-domain protein which is predicted to 

only add one glucose residue to the heptose residue proximal to the KDO residue. To 

confirm the correlation between strains containing sialic acid synthesis genes and the 

presence of the two-domain lgtF gene PCR analysis was performed. PCR analysis using the 

same forward primer (lgtF fwd 1) and a reverse primer that binds to a region in the first 

domain (lgtF rev 1) or a reverse primer that binds to a region in the second domain (lgtF 

rev 2) was used to distinguish the one-domain and two-domain genes (top two lanes Figure 

5-9). 11 of the 15 strains contained the two-domain lgtF gene. Two of the strains yielded a 

PCR product that corresponded to the one-domain lgtF, with no product indicative for the 

presence of a second domain. Similar to the neuB1 gene, sequence variation between 

strains occurs for lgtF. A third set of primers for lgtF were designed on the basis of the 

sequence of the one-domain lgtF gene from C. jejuni strain 81116 which has low sequence 

homology to 11168H lgtF (lgtF fwd2 and lgtF rev3). The genome sequence for strain 81116 

is known and the strain lacks sialic acid synthesis genes in its LOS locus. The two strains that 

were negative for the primers based on 11168H lgtF were positive for the one-domain 

81116 based lgtF primers. Only strain 64555 from the environmental clade was negative for 

the sialic acid synthesis genes but positive for the two domain lgtF. The other 4 strains that 

lacked sialic acid synthesis genes contained only a one-domain lgtF gene.  This data 

suggested a strong correlation between the presence of the two-domain lgtF gene and the 

presence of sialic-acid synthesis genes.        
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Figure 5-9: Detection of the Cj1135 gene in environmental and livestock Campylobacter 

jejuni strains 

Cj1135 gene was amplified by PCR and visualised by agarose gel electrophoresis with gel-

red staining. 30 PCR cycles were performed at an annealing temperature of 55oC for all 

primers sets. 
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5.5 MALDI-TOF analysis of native LOS  

Phosphorylation of the lipid A moiety can modulate the degree of TLR4 activation. As the 

LOS phosphorylation status can vary between strains of the same species it was of interest 

to correlate phosphorylation levels and the biological activity of the LOSs’ under 

investigation (Liu et al. 2010). As the O-deacylation of LOS removes PEA residues from the 

lipid A backbone MALDI-TOF analysis was performed on the native LOS to quantify the 

relative abundance of phosphorylation of the lipid A backbone (Figure 5-10 and Figure 

5-11). Native LOS was first desalted before being loaded onto a thin layer of 2,4,6-

trihydroxyacetophenone/nitrocellulose matrix (Chapter 2.9.4.1) MALDI-TOF analysis was 

performed in the negative ion mode. 

Figure 5-10 and Figure 5-11 show representative spectra for native LOS of the 8 

environment- and 7 livestock-associated strains respectively. Table 5-5 shows the predicted 

lipid A masses for native C. jejuni LOS. The masses are calculated for lipid A backbones 

containing 2 amide and 2 ester linkages (GlcN-GlcN) for the fatty acid chains. A decrease of 

2Da and 4Da from these values would be observed for GlcN3N-GlcN and GlcN3N-GlcN3N 

respectively. In general, the peaks were broader than those seen for the O-deacylated data 

which is likely a reflection of the composition of the linkages in the backbone differing 

within the same species, resulting in a wider mass range. The most abundant peaks 

observed for the majority of the species corresponded to the addition of two phosphates 

(P) and one phosphoethanolamine (PEA) residues on the lipid A backbone (m/z 2004.4 Da) 

and the corresponding peak for the hydrolysis of a phosphate group during the MALDI-TOF 

analysis (loss of -98Da; m/z 1906.4 Da). For other strains the most abundant peak was for 

2P modified lipid A backbone (m/z 1881.4; corresponding loss of phosphate m/z 1783.4 

Da). In addition minor peaks were seen for 2P2PEA modified lipid A, m/z 2127.5 Da (loss of 

phosphate, m/z 2029.5 Da), 2P3PEA m/z 2250.5 (loss of phosphate, m/z 2152.5Da). Only 

strain 45557 showed a peak correlating to the presence of lipid A modified with one 

phosphate only (m/z 1801.4; Figure 5-11b). Peaks were also observed for masses 

corresponding to one acyl chain being 14 carbons long instead of 16; masses for these 

peaks are detailed in Table 5-2. Peaks at m/z 1878.0 corresponded to 2PPEA (C14) with loss 

of one phosphate; due to the similarity in mass between this peak and m/z 1881.4 Da 2P 

caution was taken when assigning the peaks of around this mass to either lipid A structure. 

Calculations were done to assess whether peaks were likely to correspond to the 1906.4 Da 

peak (loss of 28.1Da; C14 instead of C16) or 1783.4 Da peak (mass difference 98Da; 1783.4 

corresponds to the loss of phosphate for 2P modified lipid A).   
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Figure 5-10: MALDI-TOF analysis of intact environmental phylogenetic clade LOSs 

Representative spectra from at least two independently acquired spectra for the intact LOS 

from environmental strains (a) 43205 (b) 32787 (c) 31481 (d) 56519  
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Figure 5-10: MALDI-TOF analysis of intact environmental phylogenetic clade LOSs 

Representative spectra from at least two independently acquired spectra for the intact LOS 

from environmental strains (e) 33106 (f) 64555 (g) 33084 (h) 40917.  
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Figure 5-11: MALDI-TOF analysis of intact livestock phylogenetic clade LOSs 

Representative spectra from at least two independently acquired spectra for the intact LOS 

from livestock strains (a) 31485 (b) 45557 (c) KJShpSm4 (d) 56282  
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Figure 5-11: MALDI-TOF analysis of intact livestock phylogenetic clade LOSs 

Representative spectra from at least two independently acquired spectra for the intact LOS 

from livestock strains (e) 32799 (f) KJcattle8 (g) 11168H  
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Native Lipid A Structure    Calculated mass (M-H)- 

(Da) 

GlcN-GlcN-P 1801.4 

GlcN-GlcN-2P 1881.4 

GlcN-GlcN-PPEA 1924.5 

GlcN-GlcN-2PPEA 2004.4 

GlcN-GlcN-2P2PEA 2127.5 

GlcN-GlcN-2P3PEA 2250.5 

GlcN-GlcN-P (C14) 1769.0 

GlcN-GlcN-2P (C14) 1853.0 

GlcN-GlcN-PPEA (C14) 1892.0 

GlcN-GlcN-2PPEA (C14) 1976.0 

GlcN-GlcN-2P2PEA (C14) 2099.0 

GlcN-GlcN-2P3PEA (C14) 2223.0 

GlcN-GlcN-P (minus P) 1703.4 

GlcN-GlcN-2P (minus P) 1783.4 

GlcN-GlcN-PPEA (minus P) 1826.5 

GlcN-GlcN-2PPEA (minus P) 1906.4 

GlcN-GlcN-2P2PEA (minus P) 2029.5 

GlcN-GlcN-2P3PEA (minus P) 2152.5 

 

 

 

Table 5-5 : Native LOS lipid A masses from MALDI-TOF 

Calculated masses for the described intact lipid A species. Lipid A composed of two D-

glucosamine sugars (GlcN-GlcN; 2 amide linkage) is used for the calculations. P = phosphate 

group; PEA = phosphoethanolamine; C14 = 14 carbon long acyl chain instead of one 16 

carbon long acyl chain. 
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To compare the level of phosphorylation between the different strains, the relative 

abundance of the tri- (2PPEA) or tetra-phosphorylated (2P2PEA) lipid A was compared to 

the relative abundance of the un- mono- (P) or di-phosphorylated (2P or PPEA) lipid A. 

There was a wide diversity between the strains in the level of phosphorylation. The range 

for the percentage of the tri- or tetra-phosphorylated lipid A was 26.3-87.5% (mean 65.4%, 

standard deviation 19.03%). Despite this diversity no one particular clade had a statistically 

higher level of phosphorylation than the other (Figure 5-12a). Similarly, the clinical 

outcome of each strain did not correlate with the level of phosphorylation (Figure 5-12b). 

There also was no correlation between the relative abundance of amide linkages and the 

relative abundance of tri- and tetra-phosphorylation of the lipid A (Figure 5-13). This data 

suggested the regulation of phosphorylation did not contribute to phylogenetic division 

and also did not account for the clinical presentation of each C. jejuni strain. 

The resolution of the full length intact LOS species was far lower than that observed for the 

O-deacylated spectra, however conformation of some of the OS structures predicted from 

the O-deacylated data was possible. Peaks at m/z 3680.4, 3583.6, and 3804.5 Da for strain 

31481 corresponded to the OS, KDO2PEAHep2Hex2HexNAc1, with lipid A modified with 

2PPEA, 2PPEA with loss of one phosphate, and 2P2PEA respectively (Figure 5-10c). The 

peak at m/z 4489.4 Da for strain 40917 corresponded to the OS, 

KDO2PEAHep2Hex5HexNAc2NeuAc1, with 2PPEA lipid A (Figure 5-10h). Livestock strain, 

31485, had a peak at m/z 4418.4 Da, corresponding to the OS, 

KDO2PEAHep2Hex6HexNAc1NeuAc1, with 2PPEA lipid A (Figure 5-11a). However, for strain 

11168H predicted to have the same OS composition as 31485, a peak at m/z 4256.0 Da 

corresponding to a lipid A modified with only 2P was observed (Figure 5-11g). For strain 

KJShpSm4, a peak at m/z 4256.0 Da corresponded to KDO2PEAHep2Hex5HexNAc1NeuAc1 OS 

plus a 2PPEA lipid A (Figure 5-11c). Strains 56282 and 32799 showed peaks corresponding 

to the KDO2PEAHep2Hex4HexNAc1NeuAc2 OS at m/z 2379.5 and 2379.7 Da respectively 

(Figure 5-11d and e). The peak seen at m/z 3874.0 Da for KJcattle8 corresponded to the 

KDO2PEAHep2Hex2HexNAc2NeuAc1 OS plus a lipid A modified with 2PPEA (with loss of one 

phosphate) (Figure 5-11f).   

To obtain structural composition of environmental strains 43205, 32787, and 56519 high 

resolution MALDI-TOF analyses were performed on the native LOS structures. These 

analyses revealed peaks that corresponded to exact masses of structures opposed to the 

average masses seen with lower resolution MALDI-TOF. Strains 32787 and 56519 yielded  
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Figure 5-12: No correlation between the phylogenetic clade of C. jejuni strains and the 

presence of LOS phosphate groups  

The relative abundance of lipid A species modified with either 3 or 4 phosphoryl groups 

(phosphate or phosphoethanolamine) was calculated from two individual spectra for each 

strain based on the area under the peaks of the masses from Table 0-5. The relative 

abundances were plotted against (a) the phylogenetic clade of each strain (b) the clinical 

presentation of each strain. 
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Figure 5-13: No correlation between the percentage of amide linkages and the 

phosphorylation status of the lipid A 

The relative abundance of GlcN3N-GlcN3N lipid A backbone was plotted against the 

relative abundance of lipid A backbone modified with 3 or 4 phosphoryl groups for each 

strain.  
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peaks at m/z 2282.1 and 2282.8 respectively corresponding to an OS composed of 

KDO2PEAHep2Hex7P2Ac. Strain 43205 had an OS peak at m/z 2345.7 of unknown 

composition. Currently these are provisional structures for these strains and await further 

confirmation by MS.  

The sialic acid residues of C. jejuni LOS from particular strains can be modified with the 

addition of O-linked acetyl groups (Dzieciatkowska et al. 2007). The gene responsible 

encodes an O-acetyl transferase; SOAT (sialylate O-acetyltransferase). Using primers for the 

SOAT gene which has high identity between strains, only 5 of the 15 strains under 

investigation were found to encode this gene (Figure 5-14). Of these 5 positive strains all 

encoded sialic acid synthesis genes from LOS class A or B, two were from the 

environmental clade and 3 were from the livestock clade. The addition of acetyl groups 

could be seen in the spectra for two strains, 56282 and 32799 (Figure 5-11d and e). Peaks 

at m/z 2423.9 and 2423.3 Da corresponded to the addition of an acetyl group to the OS of 

56282 and 32799 respectively. In addition peaks at m/z 2439.1 and 2437.6, and 2479.3 and 

2480.6 Da correlated with the addition of a glycine residue and both glycine and an acetyl 

group on the 56282 and 32799 OS respectively.  

5.6 Discussion 

Mass spectroscopy combined with gene analysis revealed differences in three structural 

components of C. jejuni LOS, these included variation in the number of amide versus ester 

linkages, lipid A phosphorylation and the carbohydrate moiety.  These observations confirm 

previous reports on the diversity of C. jejuni LOS (Moran et al. 1991; Szymanski et al. 

2003).It was found that only the OS structure variations correlated with the phylogenetic 

clade, this was a novel finding (Table 5-4, Figure 5-6, Figure 5-7, Figure 5-8, Figure 5-9). The 

level of phosphorylation and abundance of amide linkages was not distinguished by clade 

(Figure 5-5, Figure 5-12). The level of phosphorylation and abundance of amide linkages has 

previously been reported to vary between growths of one particular strain of C. jejuni as 

well as between strains, whereas the expression of the OS does not vary (unless OS genes 

are under phase variable regulation (Szymanski et al. 2003)). This may explain the lack of 

correlation, despite the wide range in the expression of these modifications between 

strains. The variability of these modification in the lipid A backbone has been suggested as 

a potential virulence factor, as both the chemical linkages of the acyl groups and lipid A 

phosphorylation status have been shown to modulate the immune response to C. jejuni 

and other pathogens (Liu, John, & Jarvis 2010; Van Mourik et al. 2010). The ability of the 
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Figure 5-14: Detection of SOAT genes in Campylobacter jejuni 

SOAT gene was amplified by PCR in 15 strains under investigation and visualised by agarose 

gel electrophoresis followed with gel-red staining. 30 PCR cycles were performed at an 

annealing temperature of 55oC for SOAT and htrB primers.  
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LOS isolated from these different strains to activate innate immune cells is explored further 

in Chapter 6.  

Interestingly, no correlation between the C. jejuni strains isolated from either humans 

presenting with clinical symptoms of disease or asymptomatic carriers was observed for 

the abundance of amide linkages, the phosphorylation of the lipid A, or the OS structure. 

This is in keeping with previous findings showing no phylogenetic link between C. jejuni 

strains with similar clinical outcomes (Champion et al. 2005). This data suggests that that 

the host rather than bacterial factors may play a greater role in defining asymptomatic 

carriage of C. jejuni.   

A range in the relative abundance of the GlcN-GlcN, GlcN3N-GlcN, and GlcN3N-GlcN3N was 

observed, although for the majority of the strains the GlcN3N-GlcN backbone was the 

dominant species (Figure 5-3, Figure 5-4, Figure 5-5). GlcN-GlcN lipid A structures were 

seen at a low abundance in a few strains. Recently, the genes responsible for the 

production of the GlcN3N precursor, UDP-GlcNAc3N, have been identified as gnnA and 

gnnB (Van Mourik et al. 2010). These genes are present in the genomes of all strains of C. 

jejuni studied to date. Mutation of either of the genes results in the production of only 

GlcN-GlcN disaccharide lipid A backbone, suggesting that there is an evolutionary 

advantage for C. jejuni in the production of GlcN3N. Indeed, the mutation of these genes 

increased the ability of the C. jejuni LOS to activate a TLR4-reporter cell line, and increased 

the susceptibility of the bacterium to the antimicrobial peptides, polymixin B, colistin, and 

cathelicidin-1 (Van Mourik et al. 2010). This may explain the relative lack of GlcN-GlcN lipid 

A structures for the strains. 

Wide variation in the level of lipid A phosphorylation (addition of phosphate or PEA groups) 

was observed in the intact LOS structures (Figure 5-10, Figure 5-11, Figure 5-12). A diverse 

mix of lipid A structures modified by one or two phosphate groups and one or two PEA 

groups were observed. The spread of the strains in abundance of 3 or 4 phosphoryl 

modifications was greater than seen for the abundance of 4 amide linkages. The 

modification of C. jejuni lipid A with PEA has recently been attributed to the gene, Cj0256 

(Cullen & Trent 2010). Interestingly, mutation of this gene also abolishes modification of 

the flagellar rod protein, FlgG, with PEA residues. An increase of 20-fold in susceptibility to 

polymixin B was observed for the Cj0256 mutant. The modification of Salmonella enterica 

lipid A with PEA groups has also been shown to decrease their susceptibility to polymixin B 

(Lee et al. 2004).  The effects of this Cj0256 mutation on TLR4 activation are unknown. The 
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abundance of phosphoryl-modification of the lipid A for Neisseria menigitidis is critical for 

TLR4 activation which suggests phosphorylation of C. jejuni may also alter TLR signalling 

(Liu, John, & Jarvis 2010). The effects of C. jejuni phosphorylation on TLR4 activation is 

described in Chapter 6.   

The OS portion is the most variable region of C. jejuni LOS, and has been studied 

extensively; this is due to its association with the onset of GBS (Table 5-4 ; (Godschalk et al. 

2004)). The number of genetic classes of the LOS locus has increased to 19 in recent years 

(Parker et al. 2008). The genes that distinguish these classes largely encode proteins that 

modify the outer core OS. In the present study, use of MALDI-TOF MS has allowed 

prediction of the OS composition for 15 strains of C. jejuni, only one of which was 

previously known. The inner core OS, composed of two heptose residues linked by a KDO 

residue to the lipid A is predicted for all of the strains studied (Table 5-4). Additional 

modification of the inner core with another KDO residue and PEA is also predicted for most 

of the strains. The modification of the two heptose residue in the inner core is performed 

by the lgtF gene product. 11 of the 15 strains encode a two-domain lgtF protein that is 

predicted to add a glucose residue to both heptose residues in the inner core (Figure 5-9; 

(Naito et al. 2010)). The other four strains contained a one-domain lgtF gene that is 

predicted to add only one glucose residue to the heptose residue proximal to the KDO 

linking the OS to the lipid A. Interestingly, the four strains that encoded the one-domain 

lgtF gene were all from the environmental-clade. This correlation is more likely to be a 

reflection of the correlation between the two-domain protein and LOS classes containing 

sialic acid synthesis genes although the possibility of the second glucose being important in 

the colonisation of livestock cannot be ruled out as all ABC LOS classes contain the two 

domain protein (Parker et al. 2008). The outer core OS structure is known to vary widely 

between strains, and it is this portion that contains the antigenic determinants responsible 

for development of auto-reactive antibodies and GBS. Only one study to date has analysed 

the OS structure of non-ABC C. jejuni strains and therefore the present study greatly 

expands on our current understanding of non-ABC OS structures (Houliston et al. 2011).  

The SOAT gene was present in 5 strains containing LOS classes A or B (Figure 5-14), and yet 

MS masses corresponding to O-linked acetyl groups were only found in two strains. The 

acetylation of C. jejuni sialic acid is known to require an α2,8-linked sialic acid, which only 

arises when it is attached to an proximal sialic acid residue (Dzieciatkowska et al. 2007). 

Therefore strains that contain only one sialic acid residue, or strains that contain only α2,3-
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linked sialic acid cannot be modified by the addition of an acetyl group. Only 3 of the 5 

strains from LOS classes A or B contained two sialic acid residues, and two of these strains 

indeed showed peaks by MS for acetyl modification. A most likely explanation for the 

observed data suggested that the third strain with two sialic acid residues may contain only 

α2,3-linked sialic acid or alternatively may have the SOAT gene under phase-variable 

genetic control.  

The flagellin glycosylation Cj1321-26 island is an important genetic marker for the 

distinction of the two C. jejuni phylogenetic clades (Champion et al. 2005). However, even if 

these genes were removed from the analysis the strains still divide into the two distinct 

clades, suggesting a distinct evolutionary separation irrespective of this genetic island. 

Here, all 21/21 strains from the livestock-clade were positive for genes encoding sialic 

synthesis genes; in comparison only 9/20 environment-associated strains were positive. 

The PCR data confirmed MALDI-TOF MS data for all 15 strains. This genetic distinction was 

not noticed during the original microarray study, this is most likely due to a lack of identity 

between the sialic acid synthesis gene, neuB1, amongst strains. Of the 15 strains, 11 were 

also positive for the Cj1324 legionaminic acid synthesis gene, a gene identified as critical in 

distinguishing the phylogenetic clades in the 2005 study (data not shown). Similar to the 

sialic acid synthesis genes, all of the livestock strains tested were positive for Cj1324.  

Multi-locus sequence typing (MLST) is used to group different C. jejuni strains based on 

specific sequences within particular house-keeping genes. In agreement with our findings, a 

separate study showed a greater propensity for C. jejuni poultry and bovine/lamb sources 

to contain sialic acid on the LOS (Hotter et al. 2010). However, another study of 335 C. 

jejuni strains, sampling multiple STs, found ~85% of C. jejuni strains from bovine sources 

contained LOS sialic-acid; this value dropped to ~40% from poultry sources (Revez and 

Hanninen 2012). The smaller sample population of our study (n = 41) may mean that 

sampling bias may have resulted in a greater skew towards sialic acid positive strains from 

the livestock strains. The LOS classes of C. jejuni strains have recently been reported to 

correlate strongly with the ST type of each strain (Revez & Hanninen 2012). As the ST types 

of the strains used in our study are unknown, potentially a sampling bias towards one 

particular ST type may have introduced LOS class bias into the study. However, our data 

agrees with previous reports suggesting an increased association between livestock strains 

and the presence of sialic-acid synthesis genes, even if they do not show as strong a 

correlation as seen in our study.  
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It is interesting to hypothesise that similar to legionaminic acid on the flagellin, sialic acid 

expression on the LOS is required for the long term colonisation of livestock, potentially 

due to the binding to specific receptors. Potentially redundancy between these structurally 

related carbohydrates may account for why not all livestock-associated strains contain both 

sialic-acid and legionaminic acid. In contrast, C. jejuni strains that both lack sialic acid or 

contain it are both able to cause acute disease in humans. Similarly, in the aforementioned 

study only ~45% of human clinical isolates contained sialic acid biosynthesis genes (Revez & 

Hanninen 2012). This data highlights sialic acid as a critical determinant involved in C. jejuni 

interactions with a particular host i.e. livestock versus human.  
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Chapter 6.  

Phosphorylation and Sialylation of C. 

jejuni Lipooligosaccharide Alters Pro-

inflammatory Cytokine Response(s) 

  



173 
 

6.1 Background 

The detection of LPS/LOS moiety of Gram-negative bacteria by the host is essential for the 

elimination and resolution of infection. This has been best demonstrated by the ability of 

the causative agent of plague, Yersinia pestis, to produce tetra-acylated lipid A which is a 

potent antagonist of human TLR4 when grown at 37oC (Montminy et al. 2006). The failure 

of TLR4 to detect Y. pestis LPS allows the rapid systemic dissemination of the bacterium 

often resulting in fatality before an effective immune response can be mounted. Murine 

mouse models also show that removal of MD2, a critical component of the TLR4 

recognition complex, results in increased susceptibility to S. typhimurium infection (Nagai 

et al. 2002). Conversely to the protective role of TLR4 signalling in host defense, 

overactivation of TLR4 can in itself have pathological consequences. For example, LPS/LOS 

is the cause of endotoxic shock during infections; this is mainly due to the induction of high 

levels of pro-inflammatory cytokines and acute-phase proteins (Poltorak et al. 1998). 

Individuals with polymorphisms in TLR4 that render them hypo-responsive to inhaled LPS 

have increased likelihood of suffering from endotoxic shock (Lorenz et al. 2002b). This 

suggests that a muted TLR4 response can also lead to endotoxic shock as a consequence of 

increased bacterial load.  

The recognition of LPS/LOS by TLR4 involves a multiple protein complex. First, the serum 

protein LPS-binding-protein (LBP) extracts LPS/LOS from the bacterial outer membrane, 

LPS/LOS bound LBP is then recognised by CD14 (which can be present in soluble or 

membranous form (Wright et al. 1990). CD14 serves to increase affinity of LPS/LOS for the 

TLR4 complex. Two LPS/LOS moieties are subsequently recognised by the tetrameric TLR4 

complex, composed of two TLR4 and two MD2 molecules (Poltorak et al. 1999; Park et al. 

2009). Engagement of TLR4 leads to the activation of both MyD88-dependant and –

independent (TRIF-dependant) signalling cascades which results in the transcriptional 

activation of a plethora of inflammatory genes (Figure 1-5) 

Structural variation in LPS/LOS between bacterial species results in variable activation of 

human TLR4. Typically, hexacylated lipid A, as seen in Escherichia coli and also C. jejuni, is a 

potent activator of TLR4. Both tetra-acylated lipid A, such as lipid IVa (an intermediary in E. 

coli lipid A biosynthesis) or from Y. pestis, and penta-acylated lipid A, from Rhodobacter 

sphaeroides, are antagonists of human TLR4 (Lien et al. 2000; Lohmann et al. 2003; 

Montminy et al. 2006). Additionally phosphate modifications of the lipid A backbone from 

S. enterica and Neisseria meningitidis induce higher levels of TLR4 activation (Liu, John, & 
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Jarvis 2010; Mata-Haro et al. 2007). In the case of C. jejuni LOS, the amide linkage of the 

acyl chains reduces to human TLR4 activation when compared to the presence of an ester 

linkage (Van Mourik et al. 2010). At present, the contribution of the phosphorylation status 

of the lipid A moiety to TLR4 activation is unknown. An added complication to dissecting 

these interactions is that the same strain can vary many of these modifications as described 

in Chapter 5.   

The elucidation of the three-dimensional structure of hexacylated E. coli LPS in complex 

with TLR4/MD2 has greatly aided in our current understanding of TLR4 activation (Park et 

al. 2009). The accommodation of hexacylated lipid A into the hydrophobic β-sheet folds of 

MD-2 leaves one acyl chain partially exposed creating the dimerisation interface for TLR4. 

Alteration in the lipid A conformation upon dimerisation allows interaction between 

phosphate groups on the lipid A backbone and positively charged residues in TLR4 and 

MD2 which aids formation of the complex. TLR4 undergoes a conformational change upon 

dimerisation; a conformation that allows the docking of adaptor molecules to the 

intracellular TIR domain resulting in the activation of downstream signalling.  

Interestingly, human TLR4 is far less promiscuous than murine TLR4. Tetra-acylated lipid A 

is an agonist of murine TLR4 whilst an antagonist of human TLR4. It has been suggested 

that the differences in affinity for LPS structures may account for the variations in disease 

outcomes between mice and humans (Miller et al. 2005). The differences between human 

and mice TLR4 highlight the necessity to use human cells during studies assessing LPS/LOS 

activation.   

6.2 Sialic acid on C. jejuni LOS impacts on TNF-α production from 

THP-1 cells 

In chapter 5, interesting distinctions in the LOS structure from C. jejuni strains of the 

different phylogenetic clades were described. We next wished to investigate if these 

structural differences translated into differential TLR4-mediated immune response(s). For 

this purpose, the release of TNF-α in response to C. jejuni LOSs’ was investigated. The 

monocytic cell-line THP-1 was employed for these studies. Prior to stimulation, THP-1 cells 

were treated overnight with phorbol 12-myristate 13-acetate (PMA) to induce 

differentiation of pro-monocytic cells to cells with phenotypic similarities to 

monocytes/macrophages (Daigneault et al. 2010). Cells were stimulated with either 10ng 

or 100ng of isolated LOS and TNF-α protein levels were quantified 20h post stimulation. At 

10ng concentration, LOS from the livestock strains induced approximately twice the 
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amount of TNF-α than that observed in response to LOS from the environmental strains, 

interestingly this difference rose to 50% at 100ng concentration (Figure 6-1). These 

observations suggested that structural differences found in the LOS from the two 

phylogenetic clades may indeed impact on TLR4 function as noted by variation in TNF-α 

levels.  

We next wished to know if the whole live bacteria from the different clades showed a 

similar pattern of TLR4 activation as noted in the presence of their respective purified LOS. 

For this series of experiments optimisation assays to assess bacterial growth rates were 

first performed (Figure 6-2). This was necessary as differential growth rates may of C. jejuni 

strains may alter cytokine induction. The CFU counts at an OD of 1 (equivalent to 3 x 

109/mL CFU of strain 11168H) were comparable between the strains; with the exception of 

the environmental strain, 40917 (Figure 6-2 white bars). The CFU counts after 24h in 

culture media (RPMI containing 10% FCS, 5% CO2, ,37oC without shaking) increased ~10-fold 

with the exception of environmental strains 43205 and 31481 which remained similar to 

the initial inoculum (Figure 6-2 black bars). The strain with the lower initial CFU count, 

40917, had similar final CFU counts to the other strains. This data suggested that C. jejuni 

strains under investigation contained similar CFU counts in the initial inoculum and also no 

significant difference was noted in the growth rates of the various strains.  

To assess the ability of live bacteria to induce TNF-α, co-cultures studies utilising C. jejuni at 

an MOI of 10 or 100 were conducted (Figure 6-3). There was a statistically significant 

increase in TNF-α production by the livestock-associated strains over the environmental 

strains upon stimulation with live bacteria (Figure 6-3; p = 0.04). At an MOI 100, the mean 

secretion of TNF-α induced by the livestock strains was approximately 50% higher than the 

environmental strains, however the spread of the data was far larger and the difference 

was no longer statistically significant. Similarity between the live infection and the 

corresponding purified LOS effects on TNF-α production suggested that the distinctions in 

the LOS structures are most likely to impact on the immunity and maybe a critical 

determinant defining disease outcome.  

LOS sialylation is known to contribute to higher levels of pro-inflammatory cytokines during   

C. jejuni–mediated DC activation (Kuijf et al. 2010). As only 45% of the environmental clade-

associated strains contained sialic acid versus 100% for the livestock clade-associated 

strains the correlation between LOS sialylation and TNF-α production was assessed. Figure 

6-4 shows the data presented in Figure 6-1 but in this instance the data was re-derived to  
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Figure 6-1: Differential TNF-α production in response to stimulation with LOS moieties 

from C. jejuni strains belonging to the livestock and environmental phylogenetic clades.  

1x 105 PMA-matured THP-1 cells were stimulated with either 10ng or 100ng of LOS isolated 

from 8 environment-clade associated strains or 7 livestock-clade associated strains for 20h. 

TNF-α levels were analysed by ELISA. Data are plotted against the phylogenetic clade of 

each strain. Each dot represents average TNF-α levels induced by LOS isolated from an 

individual strain from four independent experiments. Mann-Whitney statistical test 

performed.   
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Figure 6-2: Bacteria CFU counts and survival data 

CFU counts were performed for individual strains at an OD 0.03 (white bars; calculated to 

be 1 x108 CFU/mL for strain 11168H from previous experiments). Bacteria were left in 

culture media for 20h at 37oC under aerobic condition without shaking to mimic infection 

conditions and CFU counts were subsequently performed (black bars).   
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Figure 6-3: Live bacteria from the livestock phylogenetic clade induce higher levels of 

TNF-alpha from THP-1 cells 

1x 105 PMA-matured THP-1 cells were stimulated with the 8 environment and 6 livestock-

clade associated C. jejuni strains at an MOI 10 or 100 for 20h. TNF-α levels were analysed 

by ELISA. Data are plotted against the phylogenetic clade of each strain. Each dot 

represents average TNF-α levels induced by live bacteria of an individual strain from four 

independent experiments. Mann-Whitney statistical test performed.  
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Figure 6-4: Presence of sialic acid on C. jejuni LOS increases TNF-α levels in THP-1 cells  

1x 105 PMA-matured THP-1 cells were stimulated with either (a) 10ng or (b) 100ng of LOS 

isolated from 8 environment-clade associated strains or 7 livestock-clade associated strains 

for 20h. TNF-α levels were analysed by ELISA. Data are plotted against the number of sialic 

acid residues in the LOS of each strain. Each dot represents average TNF-α levels induced 

by LOS isolated from an individual strain from four independent experiments. One-way 

ANOVA statistical analysis performed with Tukey post-test. No stars = not significant; * 

<0.05; ** <0.01; ***<0.001. 
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separate the strains into groups based on their expression of 0, 1, or 2 sialic acid residues. 

There was a progressive increase in the levels of TNF-α induced with increasing numbers of 

sialic acid at 10ng LOS (Figure 6-4a). This increase was statistically significant between no 

sialic acid containing and 2 sialic-acid containing LOS structures (p < 0.01). At 100ng the 

increase induced by LOS from strains that contain 1 and 2 sialic acid residue was similar 

(Figure 6-4a). These differences were also observed when THP-1 cells were exposed to live 

bacteria (Figure 6-5). At an MOI 10 a significant increase in TNF-α production was observed 

by strains containing 1 sialic acid residue over sialic-acid negative strains (Figure 6-5a). At 

an MOI 100 there was a progressive increase in TNF-α induction with increasing numbers of 

sialic acid residues, however due to the spread of the data the difference was only 

statistically significant between strains that contain 0 and 2 sialic acid residues (Figure 6-5b; 

p < 0.05). Collectively, this data suggested a correlation between the level of LOS sialylation 

and TNF-α production, in response to both purified LOS and live bacteria; sialylation may 

therefore account for the observed increase in TNF-α levels noted in response to infection 

with livestock strains.     

6.3 C. jejuni lipid A phosphorylation impacts on TNF-α production  

The experiments described above were performed during a 3 month visit to Professor Gary 

Jarvis’s laboratory (University of California, San Francisco (UCSF)). Similar experiments were 

performed on returning to ICH and surprisingly the impact of increasing LOS sialylation had 

less impact on experiments performed in the UK, although there was still a statistically 

significant correlation (Figure 6-6; p < 0.05). The preparations of the LOS were the same in 

both sets of experiments; however the THP-1 cells were different. Interestingly, the 

magnitude of TNF-α induced was also different between the UK and US THP-1 cells. TNF-α 

levels induced in the US THP-1 cells ranged between 200-1000pg/mL 20h post-infection, 

compared to 3000-4000pg/mL in the UK THP-1 cells. This data suggested that potential 

biological differences between US and UK THP-1 cells may impact on responsiveness to C. 

jejuni LOS stimulation. 

A previous report indicated that the amide linkage between the acyl chain and the lipid A 

backbone generates a C. jejuni LOS that is less potent in activating TLR4 when compared to 

an LOS with ester linkages (Van Mourik et al. 2010). Data in Chapter 5 highlighted the 

potential of different strains to express varying levels of amide and ester linkages, although 

this did not correlate with the phylogenetic clade of the strain. The potential correlation 

between amide linkage abundance and the induction of TNF-α was assessed by plotting  
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Figure 6-5: Presence of sialic acid on C. jejuni LOS increases TNF-α levels in THP-1 cells in 

response to live bacteria  

1x 105 PMA-matured THP-1 cells were stimulated with either (a) an MOI 10 or (b) an MOI 

100 of 8 environment-clade associated strains or 6 livestock-clade associated C. jejuni 

strains for 20h. TNF-α levels were analysed by ELISA. Data are plotted against the number 

of sialic acid residues in the LOS of each strain. Each dot represents average TNF-α levels 

induced by live bacteria from an individual strain from four independent experiments. One-

way ANOVA statistical analysis performed with Tukey post-test. No stars = not significant; * 

<0.05; ** <0.01; ***<0.001. 
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Figure 6-6: Sialic acid on LOS has less impact on TNF-α secretion from UK THP-1 cells 

1x 105 PMA-matured THP-1 cells were stimulated with either (a) 10ng or (b) 100ng of LOS 

isolated from 8 environment-clade associated strains or 7 livestock-clade associated strains 

for 20h. TNF-α levels were analysed by ELISA. Data are plotted against the number of sialic 

acid residues in the LOS of each strain. Each dot represents average TNF-α levels induced 

by LOS isolated from an individual strain from five independent experiments. One-way 

ANOVA statistical analysis performed with Tukey post-test. No stars = not significant; * 

<0.05; ** <0.01; ***<0.001.  

0 1 2
0

500

1000

1500

2000

2500

3000

3500

4000

4500 *

No. of sialic acids

T
N

F
- 

 (
p

g
/m

L
)

0 1 2
0

500

1000

1500

2000

2500

3000

3500

4000

4500

No. of sialic acids

T
N

F
- 

 (
p

g
/m

L
)

(a)

(b)



183 
 

cytokine levels against the percentage of lipid A from each strain that contained 4 amide 

linkages (Figure 6-7). Only strains containing sialic acid were analysed to eliminate 

confounding the data. Although there was a trend towards reduced TNF-α production with 

increasing abundance of the 4 amide linkages in the lipid A backbone this was not 

statistically significant when data from the US THP-1 cells was analysed (Figure 6-7). 

However, there was a statistically significant correlation between the abundance of amide 

linkages and decreasing TNF-α production  from the UK THP-1 cells stimulated with 10ng 

but not 100ng LOS (r2 = 0.66; Figure 6-7c and d). This data suggested a correlation between 

the abundance of amide linkages and a reduction in pro-inflammatory responses may 

occur. 

Lipid A phosphorylation status can affect pro-inflammatory responses via an increase in 

TLR4 stimulation from other bacterial species (Liu, John, & Jarvis 2010). In chapter 5 it was 

established that the relative abundance lipid A modified with 3 or 4 phosphate compared 

to 0, 1, or 2 varied between the 15 strains of C. jejuni studied, although similar to the amide 

linkage data this did not correlate with the phylogenetic clades. The effect of lipid A 

phosphorylation status on TNF-α levels was analysed by plotting TNF-α levels against 

abundance of lipid A modified with 3 or 4 phosphate groups. Figure 6-8a and b shows a lack 

of correlation between the relative abundance of 3 or 4 phosphate groups and TNF-α from 

the US THP-1 cells at 10ng and 100ng concentration respectively. In contrast, a clear 

correlation between the level of phosphorylation and the induction of TNF-α was observed 

at the 10ng LOS concentration for the UK THP-1 cells (r2 =0.81, p = 0.0003), and 100ng 

concentration (r2 = 0.41, p = 0.045) (Figure 6-8c and d). This data suggested a strong 

correlation between the level of phosphorylation of the lipid A and the induction of pro-

inflammatory responses, however this was only observed in the UK THP-1 cells. 

In chapter 5, no correlation between the levels of phosphorylation and the number of 

amide linkages was found, however the strain with the highest abundance for amide 

linkages also expressed the lowest levels of phosphate groups on the lipid A (strain 

11168H). These two factors were both predicted to reduce levels of TNF-α therefore it was 

important to re-analyse the data without this one strain. Removing 11168H from the amide 

linkage correlation graph (Figure 6-7) meant the correlation was no longer statistically 

significant, therefore this correlation relied heavily on this one data point. For the 

phosphorylation correlation, the removal of the one point decreased the r2 value from 0.83 

(p = 0.0003) to 0.73 (p = 0.003) for 10ng and from 0.41 (p = 0.045) to 0.38 for 100ng (p =  
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Figure 6-7: Amide linkages in C. jejuni LOS influence TNF-α secretion in UK THP-1 cells 

1x 105 PMA-matured THP-1 cells were stimulated with either (a) and (c) 10ng or (b) and (d) 

100ng of LOS isolated from 10 sialic-acid containing C. jejuni strains for 20h. TNF-α levels 

were analysed by ELISA. Data are plotted against percentage abundance of lipid A 

containing four amide linkages. (a) and (b) data from US THP-1 cells. (c) and (d) data from 

UK THP-1 cells. Each dot represents average TNF-α levels induced by LOS isolated from an 

individual strain from at least four independent experiments. Linear regression statistical 

analysis performed. 
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Figure 6-8: Phosphate groups on the lipid A on C. jejuni LOS increase TNF-α production 

1x 105 PMA-matured THP-1 cells were stimulated with either (a) and (c) 10ng or (b) and (d) 

100ng of LOS isolated from 10 sialic-acid containing C. jejuni strains for 20h. TNF-α levels 

were analysed by ELISA. Data are plotted against percentage abundance of lipid A modified 

with either 3 or 4 phosphate groups. (a) and (b) data from US THP-1 cells. (c) and (d) data 

from UK THP-1 cells. Each dot represents average TNF-α levels induced by LOS isolated 

from an individual strain from at least four independent experiments. Linear regression 

statistical analysis performed. 
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0.08). This showed that the correlation between the phosphorylation and induction of TNF-

α did not rely heavily on this one strain. This data suggested the presence of the 11168H 

data point in the amide linkage correlation may confound the analysis as it has low levels of 

phosphorylation in addition to high amide linkage abundance.   

6.4 Potential role of LOS sialic acid and phosphorylation in 

modulating primary human monocyte response(s) 

We next wished to investigate the impact of LOS modifications on human peripheral blood 

monocytes. Interestingly, of 6 donors studied 3 showed a progressive increase in TNF-α 

induction with increasing numbers of sialic acid residues on the LOS (Figure 6-9a; p < 0.01). 

5 of the 6 donors showed a correlation between the degree of lipid A phosphorylation and 

TNF-α protein levels (Figure 6-9b; r2 = 0.61 p = 0.01). This data confirmed our previous 

observations obtained in the THP-1 cell line. The data also highlighted that differences in 

responsiveness to different structural elements of the LOS was donor- dependent.  

As induction of pro- and anti-inflammatory cytokines can be differentially regulated, it was 

imperative to investigate the impact of C. jejuni LOS modifications on IL-10 production. The 

same donors that induced increased levels of TNF-α in response to LOS sialylation also 

showed increased levels of IL-10.  Figure 6-10a shows IL-10 data from these three donors. 

In contrast, none of the donors showed a correlation between the induction of IL-10 and 

the phosphorylation of the lipid A (Figure 6-10b). This data suggested LOS sialylation 

impacts both on pro- and anti-inflammatory TNF-α and IL-10 responses, in contrast lipid A 

phosphorylation only influenced TNF-α responses. 

In Chapter 5, a correlation between the presence of the one-domain lgtF gene and a lack of 

sialic acid synthesis genes in the C. jejuni LOS locus was observed. To confirm that the 

cytokine responses observed in response to purified LOS was influenced by sialic acid 

residues and not the glucose modifications of the inner core OS (encoded by lgtF) biological 

assays were repeated using sialidase treated-LOS. LOS was treated with sialidase from 

Athrobacter ureafaciens, which is the only known sialidase to remove internally branched 

sialic acid residues (Uchida et al. 1979). Removal of the sialic acid from the LOS reduced the 

mean level of TNF-α in THP-1 cells; this decrease was observed only in the LOS that 

contained sialic acid (Figure 6-11). Comparable levels of TNF-α secretion were observed 

between the strains that lacked sialic acid and the sialidase-treated LOSs’. In addition, the 

sialidase treated LOS also caused less potent TNF-α production in monocytes from 2 donors 

(Figure 6-11b). Although the present study was relatively small, the data suggested that  
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Figure 6-9: Sialic acid residues and phosphorylation on the lipid A influence TNF-α 

production from primary human monocytes 

1 x 105 human peripheral blood monocytes were stimulated with either 10ng of LOS 

isolated from (a) 8 environment-clade associated strains and 7 livestock-clade associated 

strains (b) 9 sialic-acid containing C. jejuni strains for 20h. TNF-α levels were analysed by 

ELISA. Data were plotted against (a) number of sialic acid residues (b) percentage 

abundance of lipid A modified with either 3 or 4 phosphate groups. Each dot represents 

average TNF-α levels induced by LOS isolated from an individual strain from at least four 

independent experiments. (a) One-way ANOVA statistical analysis performed with Tukey 

post-test. No stars = not significant; * <0.05; ** <0.01; ***<0.001. (b) Linear regression 

statistical analysis performed. 
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Figure 6-10: Sialic acid but not phosphorylation on C. jejuni LOS influences IL-10 

production by primary human monocytes 

1x 105 human peripheral blood monocytes were stimulated with either 10ng of LOS 

isolated from (a) 8 environment-clade associated strains and 7 livestock-clade associated 

strains (b) 10 sialic-acid containing C. jejuni strains for 20h. IL-10 levels were analysed by 

ELISA. Data were plotted against (a) number of sialic acid residues (b) percentage 

abundance of lipid A modified with either 3 or 4 phosphate groups. Each dot represents 

average IL-10 levels induced by LOS isolated from an individual strain from at least four 

independent experiments. (a) One-way ANOVA statistical analysis performed with Tukey 

post-test. No stars = not significant; * <0.05; ** <0.01; ***<0.001. (b) Linear regression 

statistical analysis performed. 
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Figure 6-11: Sialidase treatment of sialic-acid containing LOS reduces TNF-α production in 

primary monocytes 

1 x 105 (a) UK THP-1 cells (b) human monocytes were stimulated with 10ng LOS either 

treated with 0.8U/mL sialidase from Arthrobacter ureafaciens (N-treated) or untreated for 

20h. TNF-α levels were analysed by ELISA. Each dot represents average TNF-α levels 

induced by LOS isolated from an individual strain from (a) five independent experiments (b) 

two individual donors. (a) Mann-Whitney statistical analysis performed (b) One-way 

ANOVA statistical analysis performed with Tukey post-test. No stars = not significant; * 

<0.05; ** <0.01; ***<0.001. 
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LOS sialic acid residue mediated an increase in TNF-α, and different structural feature on 

the LOS such as the glucose residues on the inner core OS were less critical. 

Lipid IVa, an antagonist of human TLR4, was used to assess the importance of TLR4 on the 

induction of TNF-α levels (Lien et al. 2000). THP-1 cells were pre-treated with either 50 or 

500ng/mL Lipid IVa for 1h prior to stimulation with 10ng/mL LOS in the presence of the 

inhibitor for a further 20h. In the presence of 50ng/mL of the inhibitor there was  a marked 

reduction in TNF-α levels in response to both sialylated and non-sialylated LOS; this 

reduction was even more prominent (>90% reduction) at the 500ng/mL concentration 

(Figure 6-12). No statistical difference in TNF-α levels were observed between sialylated 

and non-sialylated LOS at both 50ng/mL and 500ng/mL which suggested that sialylation 

mediated its pro-inflammatory effects via TLR4. The almost complete inhibition in the LOS-

stimulated TNF-α levels in the presence of the inhibitor also indicated that the LOS 

preparations utilised were of high purity with minimal lipoprotein contamination (TLR2 

agonists) which is a common problem with LOS/LPS preparations. For control experiments, 

peptidoglycan (PGN), a known TLR2 agonist, was used to stimulate THP-1 cells in the 

presence of Lipid IVa. 1µg/mL PGN stimulation is the absence of lipid IVa induced and 

average of ~1700pg/mL TNF-α after 20h, compared to ~1500pg/mL in the presence of 

500ng/mL lipid IVa  showing that there was non-specific effect of treating the cells with the 

Lipid IVa inhibitor. 

A TLR4 reporter cell-line was utilised to assess the effects of structural differences in C. 

jejuni LOS specifically during TLR4 engagement. Human embryonic kidney (HEK) cells 

express no or minimal basal levels of TLRs which therefore makes it a good reporter cell-

line to genetically over-express and analyse TLR function. HEK293 cells stably transfected 

with human TLR4, CD14, and MD-2 co-receptors and in addition a secreted embryonic 

alkaline phosphatase (SEAP) reporter gene were employed (Invivogen). The SEAP gene was 

under the control of a minimal IL-12p40 promoter with additional transcription binding 

sites for NF-κB and AP-1 which render the SEAP responsive upon TLR4 engagement. The 

level of SEAP activity was assessed by the addition of a substrate which underwent colour 

change in the presence of alkaline phosphatase. An increasing trend towards higher TLR4 

activity with increasing LOS sialylation was observed (Figure 6-13a). There was a large 

spread of the data from LOS that contained one sialic acid but statistical significance was  
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Figure 6-12: TLR4 signalling is essential for C. jejuni LOS-mediated TNF-α induction in THP-

1 cells 

1x 105 PMA-treated UK THP-1 cells were pre-treated for 1h with Lipid IVa at 50ng/mL or 

500ng/mL, or left untreated. 10ng LOS isolated from 8 environment-clade associated 

strains or 7 livestock-clade associated strains were used to stimulate the cells for 20h. TNF-

α levels were analysed by ELISA. Each dot represents average TNF-α levels induced by LOS 

isolated from an individual strain from three independent experiments. One-way ANOVA 

statistical analysis performed with Tukey post-test. ns = not significant; * <0.05; ** <0.01; 

***<0.001. 

  

  

0

1 
or 

2

Lip
id

 IV
a 

(5
0n

g/m
l) 

0

Lip
id

 IV
a 

(5
0n

g/m
L) 1

 o
r 
2

Lip
id

 IV
a 

(5
00

ng/m
L) 0

Lip
id

 IV
a 

(5
00

ng/m
L) 1

 o
r 
2

0

1000

2000

3000
**

ns

ns

***
***

No. of sialic acids

T
N

F
- 

 (
p

g
/m

L
)



192 
 

 

 

 

Figure 6-13: Sialic acid on the LOS influences TLR4 activation in a TLR4-reporter cell line 

HEK/TLR4 SEAP reporter cells were stimulated with 1ng/mL purified LOS from (a) 8 

environment-clade associated strains and 7 livestock-clade associated strains (b) & (c) 10 

sialic-acid containing C. jejuni strains for 20h. SEAP activity was measured with the addition 

of an alkaline phosphatase sensitive substrate that turned blue/purple upon phosphatase 

activity. Data are from three independent experiments and are plotted against (a) the 

number of sialic acid residues in the LOS of each strain (b) the percentage abundance of 

four amide linkages in the lipid A backbone (c) percentage abundance of 3 or 4 phosphate 

groups on the lipid A. (a) Mann-Whitney statistical analysis performed on specific columns.  

(b) and (c) Linear regression statistical analysis performed.   
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noted between the non-sialylated versus LOS containing 2 sialic acid residues (p < 0.05). 

There was no statistically significant correlation between TLR4 function and the level of LOS 

phosphorylation nor with the extent of amide linkage (Figure 6-13b and c). This data clearly 

suggested that LOS sialylation directly impacted on TLR4 engagement.  

6.5 Discussion 

The present study highlighted a significant difference in monocytic/macrophage derived 

TNF-α production in response to C. jejuni LOS from the two different phylogenetic clades 

(Figure 6-1). LOS sialylation was found to be the main structural feature contributing to this 

biological response. In Chapter 5, 7/7 of the livestock strains were found to contain sialic 

acid compared to only 3/5 of the environmental strains. Comparing cytokine response(s) 

with the expression of sialic acid clearly showed that THP-1 cell-derived TNF-α levels were 

dependent upon the presence of LOS sialic acid; in primary human monocytes both TNF-α 

and IL-10 production showed this dependence (Figure 6-4; Figure 6-9; Figure 6-10). 

Evidence for these findings were obtained by exposing cells to sialidase-treated LOS. Co-

cultures in the presence of treated LOS led to reduced TNF-α levels confirming the 

importance of sialylation (Figure 6-11). A previous study reported the importance of sialic 

acid on C. jejuni LOS in modulating human monocyte-derived DC cytokine responses (Kuijf 

et al. 2010). The induction of cytokines was significantly reduced in DCs stimulated with 

either sialidase-treated LOS or LOS isolated from the sialic acid transferase mutant, ∆cstII. 

By analysing the effects of natural variants of C. jejuni LOS sialylation, the current study 

extends our current knowledge of C. jejuni LOS sialylation function. 

The effects of LOS sialylation were found to be TLR4 dependent. The inhibition of TLR4 

using the antagonist, lipid IVa caused marked reduction (~90%)  in  TNF-α levels and this 

effect abolished the observed differences between the sialylated and non-sialylated strains 

(Figure 6-12). In addition, the level of sialylation impacted on the degree of TLR4 activation 

(Figure 6-13). The ability of C. jejuni LOS sialylation to alter TLR4 responses has previously 

been reported (Kuijf et al. 2010). LOS isolated from a ∆cstII mutant induced <50% activity 

when compared to its WT counterpart. The sialic-acid modification of C. jejuni LOS has 

been identified as important in binding to two receptors: Sialoadhesin and Siglec-7 (Avril et 

al. 2006; Heikema et al. 2010). Siglec-7 is able to bind to terminal α2,8-linked sialic acid, 

whereas Sialoadhesin binds terminal linked α2,3-linked sialic acid. Interestingly, DC-

mediated cytokine responses and downstream polarisation of naïve T cells differs 

depending on linkage conformation of the sialic-acid on the LOS (Bax et al. 2011). In the 
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current study the potential differences in sialic acid linkage between various LOS species 

was not investigated and at present remains unknown. As differences in sialylation 

impacted on TLR4 signalling in a reporter cell line that lacks expression of Siglecs, the 

potential importance of Siglecs or other co-receptors in the differential responses between 

non-sialylated and sialylated LOS requires further investigation. . The ability of most Siglecs 

to signal via intracellular inhibitory ITIM motifs to dampen inflammation also raises 

mechanistic concerns over the ability of Siglecs to modulate pro-inflammatory responses 

(Cao and Crocker 2011b).  A more plausible mechanism for the differential responses is a 

direct impact of sialylation on the recognition LOS by the TLR4-MD2 complex. However, no 

known structural studies have elucidated how sialylation may impact on TLR4 recognition 

and engagement; to date only the inner core OS residues have been shown to interact with 

the TLR4-MD2 complex and any potential interactions between the outer core of the OS 

and the host TLR complex remain ill-defined (Park et al. 2009).  

The effects of LOS sialylation on DC TNF-α production were reproducible in cells stimulated 

by whole live bacteria, signifying the importance of structural modification of C. jejuni LOS 

in the recognition of the whole bacterium by the innate immune system (Figure 6-3). 

Interestingly, LOS sialylation of C. jejuni human clinical isolates is associated with severity of 

gastro-enteritis (Mortensen et al. 2009). Patients infected with C. jejuni bearing sialic-acid 

on the LOS are more likely to suffer from bloody diarrhoea and have longer duration of 

symptoms. Sialylation of C. jejuni LOS has also been shown to increase C. jejuni invasion of 

IECs (Louwen et al. 2008). It is possible that both the increased invasion of IECs and 

elevated pro-inflammatory responses contributes to the severity of gastro-enteritis. In 

patients, elevated antibody responses are also associated with sialylated C. jejuni strains 

(Mortensen et al. 2009). In vitro studies indicate that sialylated C. jejuni strain-mediated DC 

activation lead to enhanced B-cell responses (Kuijf et al. 2010). In summary, sialylation of C. 

jejuni LOS affects many aspects of the host-pathogen crosstalk; this spectrum ranges from 

initial epithelial/innate immune response to later adaptive immune outcome.  

Pathogenic bacteria have adapted sialylation as a successful immune evasion strategy. This 

moiety can be employed via a number of different mechanisms. Sialic acid on Neisseria 

menigitidis LOS inhibits DC phagocytosis and it impairs complement activation for Neisseria 

gonorrhoea (Ngampasutadol et al. 2008; Unkmeir et al. 2002). Interestingly, the sialylation 

of Neisseria mengitidis LOS has no impact on cytokine induction, suggesting that the 

influence of LOS structural modifications is pathogen specific (Pridmore et al. 2003). 
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Sialylation of Group B Streptococcus capsular polysaccharide engages the inhibitory 

receptor, Siglec-9, which reduces neutrophil oxidative burst (Carlin et al. 2009b). Complex 

interactions have evolved between pathogens and the host; sialic acid on microbes clearly 

interacts with the host innate immune system; in the case of C. jejuni our data suggested 

that sialic acid can elevate pro-inflammatory responses via increased activation of PRRs. It 

is interesting to speculate that the nature of these interactions may be critical for the 

outcome of C. jejuni depending on the host. As 100% of all livestock strains analysed 

contain genes required to sialylate the LOS, this may be critical for a potential receptor 

interaction or immune evasion strategy that allows long-term colonisation of livestock. 

Conversely, LOS sialylation is not essential for acute pathogenic infection of the human 

host, although it increases disease severity. This suggests that the interaction between the 

sialylated LOS and the human immune system is very different to that seen in livestock.  

Phosphate modification (addition of phosphate or phosphoethanolamine groups) of lipid A 

in other pathogens is known to be critical in increasing cytokine induction in innate 

immune cells (Liu, John, & Jarvis 2010). Variation in the level of lipid A phosphorylation 

between C. jejuni strains has previously been observed but not quantified (Szymanski et al. 

2003). Here, the level of phosphorylation of different C. jejuni strains was found to strongly 

correlate with the induction of TNF-α from UK THP-1 cells and human primary monocytes 

(Figure 6-8; Figure 6-9). The recently elucidated crystal structure of the TLR4-MD2 complex 

with hexacylated Escherichia coli LPS highlighted the critical importance of lipid A 

phosphorylation in the formation of the TLR4-MD2 complex (Park et al. 2009). The two 

phosphate groups form interactions with a cluster of positively charged residues on both 

MD-2 and TLR4, and a hydrogen bond forms with a residue in MD-2, aiding the formation 

of the heterodimer. It is interesting to speculate that additional phosphate groups on C. 

jejuni LOS may form additional interactions in the TLR4-MD2 complex increasing the 

signalling capacity of the receptor complex and therefore increasing downstream cytokine 

induction. Disappointingly, phosphorylation levels did not alter the induction of TLR4 in the 

HEK/TLR4 reporter cell line (Figure 6-13). This may have been a problem with saturation of 

TLR4 activation, lower concentrations of LOS were needed to activate the HEK/TLR4 cells in 

comparison to THP-1 cells. Interestingly, the level of phosphorylation varies between 

growths of the same C. jejuni strain (Szymanski et al. 2003), and although this is a potential 

virulence factor nothing is known about the regulation of the genes involved in controlling 

phosphorylation levels in vivo.  
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Alteration of C. jejuni lipid A from ester to amide bonds linking the acyl chains to the 

backbone has been reported to reduce TLR4 activation (Van Mourik et al. 2010). Although 

the correlation between the abundance of four amide linkages and a reduction in TNF-α 

production from UK THP-1 cells was statistically significant, the correlation relied heavily on 

data from one strain that coincidently had both high levels of amide linkages and low levels 

of phosphorylation, both factors predicted to induce low TNF-α levels (Figure 6-7). It was 

therefore not possible to conclude whether the natural variation in the abundance of 

amide linkages influenced the levels of TNF-α secretion.  

Interestingly, different THP-1 cells appeared to have differing sensitivity to structural 

modifications of C. jejuni LOS. US THP-1 cells were responsive to sialylation but not 

phosphorylation of the LOS (Figure 6-4; Figure 6-8). Conversely, sialylation has less impact 

on UK THP-1 cells but phosphorylation greatly increased the induction of TNF-α (Figure 6-6; 

Figure 6-8). It is interesting to speculate that point mutations may have occurred in TLR4 or 

MD2 during the continual passage of the THP-1 cells, resulting in diverging specificities for 

LOS structural features. Interestingly, monocytes from different donors also showed 

differing responsiveness to LOS modifications (Figure 6-9). Only 3/6 donors showed a 

correlation between sialylation and TNF-α production. 5/6 donors showed a trend towards 

a correlation between phosphorylation and TNF-α production, which only became 

statistically significant when the data from the donors was combined. Polymorphisms in 

the human TLR4 are well characterised and alter susceptibility to a range of diseases such 

as septic shock, ulcerative colitis, and pre-term labour (Lorenz et al. 2002a; Lorenz et al. 

2002b; Torok et al. 2004). TLR4 polymorphisms with reduced responsiveness to LPS 

conversely increased susceptibility of the host to septic shock due to increased burdens of 

Gram negative infection (Lorenz et al. 2002b). It would be interesting to assess the impact 

of TLR4 polymorphisms on human C. jejuni infection as it remains unknown whether TLR4 

signalling protects the host by reducing bacterial load or exacerbates disease by inducing 

pro-inflammatory responses.     
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The immune system has evolved in parallel with the microbes that it encounters. This has 

allowed the evolution of interactions between host Pattern Recognition Receptors (PRRs) 

and conserved Pathogen- or Microbe-Associated Molecular Patterns (PAMPs/MAMPs). The 

detection of invading pathogens by PRRs provides a robust immediate immune response 

that limits pathogen spread before a specific adaptive immune response can be generated. 

The ability to detect MAMPs is most likely an absolute requirement for species survival. 

Although TLRs were first discovered in Drosophila, it is now appreciated that plants also 

express transmembrane receptor kinases bearing LRR domains that are involved in 

microbial recognition (Gomez-Gomez and Boller 2000; Song et al. 1995). The plant PRR for 

flagellin, FLS2, recognises a conserved domain in flagellin which is distinct from the domain 

involved in TLR5 interactions, suggesting that plants and animals have evolved MAMP 

recognition convergently which highlights its importance in host defense (Gomez-Gomez & 

Boller 2000). The idea that these PRRs can also detect host-related components when out 

of their usual context (DAMPs) suggests that PRRs also function to detect deviations from 

normal homeostatic conditions. During homeostasis it is likely that a large proportion of 

the gut microbiota do not interact directly with the GI mucosa due to the thick mucus layer 

covering the epithelium. However, it is also likely that many “commensal” bacteria are able 

to survive within the mucus layer and interact with cells of the mucosa via MAMPs/PRR 

interactions, generating a tolerogenic immune response with the overall effect of allowing 

commensalism and/or symbiosis to flourish. One method for generating tolerogenic 

immunological status is the regulation of TLR expression and signalling within the lamina 

propria (LP) . For example, TLR4 is expressed in lower levels on intestinal immune cells and 

TLR signalling pathways are dampened in intestinal macrophages (Smythies et al. 2010). 

The invasive properties of enteric pathogens however overcome the dampened intestinal 

immune status by engaging PRRs in an overt manner promoting an inflammatory status.  

In vitro studies show C. jejuni is able to invade intestinal epithelial cells (IECs) and disrupt 

tight barrier junctions, this is likely to aid passage into the LP whereupon C. jejuni will 

encounter innate immune cells (Bras & Ketley 1999; Wine, Chan, & Sherman 2008). ~1.6% 

of LP cells are CD11c+ DCs (in mice) which function both in intestinal homeostasis and 

present antigen during infection (Denning et al. 2007). In the present study we investigated 

C. jejuni-mediated effects on BMDC and human monocyte derived DCs. C. jejuni induced DC 

maturation resulting in the secretion of a wide-range of inflammatory cytokines and 

infection also led to the upregulation of co-stimulatory molecules and MHC class II (Figure 

3-3 and Figure 3-4). 
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The pro-inflammatory cytokines IL-6 and TNF--α were induced in high levels by C. jejuni in 

BMDCs (Figure 3-4). The induction of the cytokines upon DC/C. jejuni interaction may aid 

understanding of C. jejuni-mediated pathology in the intestine. IL-6 and TNF--α both induce 

the acute phase response causing infiltration and activation of neutrophils and other 

leukocytes into the LP (Andus et al. 1988). Collectively the induction of high levels of pro-

inflammatory cytokines likely aids in the clearance of C. jejuni but at the cost of inducing 

pathology. Regulation of IL-1β however presented a more complex scenario. C. jejuni 

induced fairly low levels of IL-1β from BMDCs (Figure 3-4).The physiological relevance of 

this IL-1β induction during early C. jejuni infection is debateable as few reports suggest high 

levels of IL-1β during C. jejuni infection in in vitro DC- or ex vivo biopsy-co-culture studies 

(Edwards et al. 2010; Hu et al. 2006). Parallel studies in our laboratory investigating other 

enteric pathogens found IL-1β levels of >2000 pg/mL in response to EPEC, C. difficile, and S. 

typhimurium at low MOI of between 1 and 10, compared to ~300pg/mL by C. jejuni at an 

MOI 100. We have previously reported low levels of IL-1β induction (<20pg/mL) in  human 

intestinal biopsies co-cultured with C. jejuni 8h post-infection in an ex-vivo model of 

infection (Edwards et al. 2010). In contrast, C. difficile induces levels of ~500pg/ml in a 

similar ex-vivo model (Jafari N, unpublished data).  Although this may be a result of the 

conditions of our in vitro assays not inducing expression of specific virulence factors in C. 

jejuni that may induce the inflammasome.  No reports so far have shown the activation of 

the inflammasome by ε-proteobacteria, a factor that may aid long-term colonisation with 

the host. The lower activation levels of IL-1β by C. jejuni may explain why other enteric 

pathogens have shorter incubation periods before inducing overt intestinal inflammation.  

Interestingly, C. jejuni induced higher levels of IL-12 compared to IL-23 from BMDCs (Figure 

3-4). This correlated with induction of IFNγ but not IL-17A in naive T-cells stimulated with C. 

jejuni-activated DCs and is in agreement with other studies highlighting Th1 skewing by C. 

jejuni (Figure 4-16) (Edwards et al. 2010;Rathinam, Hoag, & Mansfield 2008). The driving of 

Th1 in the mucosa is linked to the activation of innate immune cells, including PMNs which 

is likely to contribute to the inflammatory pathology associated with campylobacteriosis. 

However, in humans with prior exposure to infection C. jejuni-antigen dependent induction 

of IFNγ is associated with protection from pathology but has limited impact on colonisation 

(Tribble et al. 2010). This suggests that the production of IL-12 in DCs in responses to C. 

jejuni is beneficial to the host via the induction of protective Th1 responses which may limit 

invasion of C. jejuni into the mucosa and minimise the onset of inflammatory diarrhoea. 

However, C. jejuni may still be able to inhabit the mucus layer as Th1 responses afford 
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minimal protection from colonisation. This highlights a potential dual role of Th1 responses 

in driving pathology in immune naïve individuals whilst affording protection in humans with 

prior exposure by limiting C. jejuni contact with LP immune cells.  

A recent review of the literature suggested that as less than 1/100 human exposures to C. 

jejuni results in pathology (Havelaar et al. 2009). It is also known that repeated exposure to 

C. jejuni limits pathology but not colonisation upon re-infection. It is interesting to 

speculate that C. jejuni may manipulate the adaptive immune response in order to favour 

colonisation in the human intestine. Despite symptomatic disease lasting on average less 

than week the mean carriage of C. jejuni after infection is 37 days (Kapperud et al. 1992). 

This suggests that the bacterium is able to persist within the mucosa without causing 

further pathology and adds weight to the hypothesis of bacterial-mediated immune 

manipulation. The ability of the murine pathobiont Helicobacter hepaticus and human 

pathogen Helicobacter pylori to drive Treg induction in in vivo and in vitro highlights the 

notion that bacteria other than “true” commensals do manipulate the adaptive immune 

system as an immune evasion strategy (Kao et al. 2010; Kullberg et al. 2002).  

 It was interesting to observe the high levels of IL-10 induction by C. jejuni in BMDCs (Figure 

3-4). Other enteric pathogens such as EPEC, C. difficile, and S.typhimurium show markedly 

lower IL-10 induction when compared to C. jejuni (data not shown). IL-10 plays a critical 

role in intestinal immune regulation which is highlighted by the spontaneous development 

of colitis in IL-10 KO mice (Kuhn et al. 1993). The induction of IL-10 by C. jejuni may be 

advantageous to the bacterium as it would limit inflammation and potentially reduce 

clearance by the immune system. It is interesting to note that only IL-10-/- mice develop 

pathology to C. jejuni despite similar levels of colonisation to wild-type mice (Mansfield et 

al. 2007). This suggests colonisation can occur without pathology, and only the 

dysregulation of the immune system generates pathology. High IL-10 induction is important 

for Treg skewing by H. pylori, and is implicated in the establishment of long-term infection 

as IL-10 KO mice show markedly lower colonisation rates than WT mice (Kao et al. 2010; 

Panthel, Faller, & Haas 2003). Differential induction of cytokines such as IL-10 by C. jejuni in 

humans may explain the multiple outcomes observed upon infection. 

Engagement of PRRs by microbes tailors the innate immune response which dictates the 

overall immune outcome to infection. PRRs detect specific MAMPs because they are largely 

conserved on microbes which suggest they are structurally necessary for cell viability; 

mutations that may aid in reduced PRR detection may also not support survival raising a 
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conundrum for microbial fitness. Some bacteria have however evolved to manipulate these 

interactions by altering surface structures; exemplified by the ability of α- and ε-

proteobacteria to evade TLR5 recognition via specific mutation in the flagellin protein 

monomers (Andersen-Nissen et al. 2005). Due to the absolute requirement of MyD88- and 

TRIF-dependent TLR signalling for C. jejuni-mediated cytokine production (Figure 4-3) and 

the lack of interaction between C. jejuni FlaA and TLR5, it was interesting to observe a 

marked reduction in IL-10 and IL-1β production with the ΔflaA mutant (Figure 3-6) These 

observations led to the hypothesis that C. jejuni flagellin may modulate immune responses 

via TLR5-independent mechanism(s). The identity of these interactions was further sought 

(Chapter 4).  

In recent years, questions have arisen as to whether Janeway’s original paradigm of 

microbial detection by engagement of PAMPs/PRRs is sufficient to explain the differential 

immune response seen between the gut microbota during homeostasis and/or during 

infection. This has led researchers to favour Matzinger’s danger theory, whereby the host 

does not elicit an overt inflammatory immune response unless “danger” is sensed 

(Matzinger 2001). This is exemplified by the detection of intracellular bacteria by the 

inflammasome. C. jejuni induces IL-1β secretion from BMDCs (Figure 3-6) which is reduced 

when the FlaA protein is mutated. Interestingly, C. jejuni-dependent IL-1β secretion was 

independent of the intracellular flagellin receptor, IPAF but dependent on NLRP3 and ASC 

(Figure 4-14). This suggests an as yet unknown ligand of C. jejuni induces the inflammasome 

and IL-1β in BMDCs. There are two possible hypothesises for the lower induction of IL-1β 

by the ∆flaA isogenic mutant. Firstly, the loss of motility may alter subcellular localisation of 

the bacterium once phagocytosed. It is possible that low numbers of C. jejuni may escape 

the phagosome resulting in NALP3- and ASC-dependent activation of the inflammasome, 

and this may be altered with the mutation of the flagella. Secondly, glycosylation moieties 

on the flagellin may directly interact with other lectin-receptors that may activate the non-

canonical inflammasome pathways as was recently reported for dectin-1 (Gringhuis et al. 

2012).  

 Signalling via the Pse5Ac7Am structural modification (or derivatives of) of C. jejuni flagellin 

accounted for ~a third of C. jejuni-induced IL-10 production (Figure 3-17). In contrast, the 

carbohydrate moiety of the flagella did not significantly alter the induction pro-

inflammatory cytokines. This suggested that particular carbohydrate modifications of C. 

jejuni surface structures may be beneficial to the bacterium by manipulating the host 



202 
 

innate immune response. Interestingly, many of the surface structures of C. jejuni are 

glycosylated. Many of these structural modifications vary between different C. jejuni strains 

including the LOS, capsule, and flagella. Glycosylation can be a means of immune evasion as 

it allows masking of antigenic surface proteins from immune recognition. In addition, it is 

becoming increasing clear that these carbohydrate structures themselves are important for 

interaction with the host via PRR engagement. Genes encoding the Pse (pseudaminic acid) 

pathway have been found in most C. jejuni strains studied to date whereas a significant 

proportion of strains lack the Ptm (legionaminic acid) pathway (Champion et al. 2005). The 

Pse pathway is also found in H. pylori (Schirm et al. 2003). However, the flagella of H. pylori 

are coated in a sheath which protects it from immune detection; this corresponds to a lack 

of diversity in the pseudaminic structures found between H. pylori compared to the 

diversity observed between strains of C. jejuni.  

The ability of C. jejuni to bind Siglec-10 via the glycosylated flagella was elucidated in this 

study (Figure 4-9). We are currently undertaking experiments to decipher whether direct 

engagement of Siglec-10 by C. jejuni induces IL-10. The engagement of Siglec-9 leads to the 

specific induction of IL-10 suggesting the engagement of Siglec-10 by C. jejuni could induce 

IL-10 (Ando et al. 2008). Although Siglec-10 is known to be expressed in the small intestine, 

the specific cellular expression is unknown (Li et al. 2001). It is interesting to speculate that 

the expression of modulating immune receptors such as Siglecs may vary between humans 

and chickens and may in part account for the difference in disease outcomes between the 

two hosts. Indeed, one report has highlighted a link between the underexpression of 

Siglecs and the over-reactivity of human B- and T-cells compared to chimpanzee cells to a 

number of different stimuli (Soto et al. 2010). The engagement of the CLR, SIGNR1, on LP 

DCs has also been shown to specifically induce IL-10 promoting the generation of 

regulatory T cells and inducing oral tolerance (Zhou et al. 2010). This suggests engagement 

of inhibitory receptors on DCs in the mucosa could be a target for enteric pathogens. 

Potentially, differential expression of inhibitory receptors between individuals may also 

account for why only a small percentage of people who are exposed to C. jejuni develop 

pathology (Havelaar et al. 2009). Interestingly, chickens do not express a functional 

homolog of Siglec-10 which could lead to differential immune interactions between C. 

jejuni with the mucosal immune cells of the chicken and human intestine.      

In Chapters 3 and 4 we observed that C. jejuni activated MAPK signalling in a TLR-

dependent manner. IL-10 in particular was suppressed during pharmalogical inhibition of 
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the MAPK signalling cascades (Figure 3-13). Additionally, the ∆flaA isogenic mutant showed 

reduced activation of p38 (Figure 3-10). Analysing the ability for Siglec-10 engagement to 

modulate MAPK signalling is critical to taking the current observations further. The 

presence of a grb2-binding domain on the intracellular portion of Siglec-10/G suggests 

receptor engagement could potentially link to the activation of MAPK signalling (Zhang et 

al. 2003). This however would be the first report of Siglec-mediated MAPK activation.  

We studied C. jejuni LOS-mediated innate immune interactions in addition to responses to 

the flagella (Chapter 6). Mutation of genes involved in C. jejuni lipid A biosynthesis, the 

ligand for TLR4, is lethal suggesting that the LOS is critical for membrane integrity 

(Phongsisay, Perera, & Fry 2007). Although the lipid A acyl chains form the major structural 

mass in the dimerisation of the TLR4 complex, phosphorylation of the lipid A disaccharide 

backbone is also involved in charge interactions with the TLR4 complex (Park et al. 2009). 

Different strains of C. jejuni contained varying levels of phosphorylation on the lipid A 

backbone (Chapter 5). Further, abundance of phosphorylation correlated with TNF--α levels 

in monocytes and THP-1 cells; a process that was TLR4-dependent (Chapter 6). Mutation of 

C. jejuni lipid A PEA modifications causes a 20-fold increase in susceptibility to cationic 

AMPs suggesting that the phosphorylation of lipid A is beneficial to the bacterium despite 

inducing higher levels of TNF--α (Cullen & Trent 2010). Variation in the abundance of amide 

versus ester linkage of the acyl chains to the lipid A backbone between different C. jejuni 

strains was also noted (Chapter 5). The alteration of ester linkages to amide linkages has 

previously been reported to both reduce TLR4 activation and also decrease susceptibility to 

AMPs (Van Mourik et al. 2010). We observed a trend towards this correlation between the 

strains under investigation, however due to lack of spread of the strains the data did not 

prove this statistically. Collectively the data indicated that different C. jejuni strains possess 

various chemical modifications on their lipid A, which can alter TLR4 engagement and the 

induction of pro-inflammatory cytokines.  

C. jejuni strains from the “livestock” clade all contained genes involved in the biosynthesis 

of LOS sialic acid, whereas less than 50% of strains from the “environmental” clade 

contained these genes (Chapter 5). This data suggested that LOS sialylation is similar to the 

modification of C. jejuni flagella with legionaminic acid and its derivatives, with a greater 

propensity for livestock strains to contain these modifications. The glycosylation of many C. 

jejuni surface structures is hypervariable therefore it was interesting to find a critical 

component of C. jejuni in the colonisation of livestock.  



204 
 

There are many reasons why bacteria sialylate their surface. These include enhancing 

factor H binding which limits complement deposition (Ram et al. 1998); molecular mimicry 

of host glycoconjugates which reduces bacteria-specific antibody responses (Vimr and 

Lichtensteiger 2002); to reduce neutrophil oxidative burst by binding the inhibitory 

receptor Siglec-9 (Carlin et al. 2009b); and to aid binding to epithelial cells (Louwen et al. 

2008). Any of these cellular events may explain the greater propensity for the presence of 

sialic acid biosynthesis genes in livestock C. jejuni strains. Interestingly, in our study human 

clinical isolates did not show as strong a correlation with sialic acid biosynthesis genes as 

livestock strains. Potentially, overlapping function between the sialic acid on the LOS and 

sialic acid-like structures on the flagella in the human intestine could account for why fewer 

human clinical isolates contain sialylated LOS.  

Contrary to its role in immune evasion, increasing levels of sialylation correlated with an 

increase in TNF-α from monocytes (Chapter 6). This correlation was abolished upon 

sialidase treatment. Additionally, inhibition of TLR4 with the agonist lipid IVa inhibited TNF-

α secretion which implicated TLR4 signalling. This data agreed with a previous report which 

showed a sialic acid-deficient isogenic mutant of C. jejuni causes reduced activation of TLR4 

compared to the WT strain (Kuijf et al. 2010). The crystal structure of TLR4 bound to E. coli 

hexacylated LPS does not show a definitive position of the OS moiety in the receptor 

complex (Park et al. 2009). However this does not negate potential contribution of OS in 

receptor ligation. Interestingly, the KDO residue which links the OS to the lipid A is found in 

most bacterial LPS/LOS moieties. The KDO is similar to sialic acid in that it is negatively 

charged due to the presence of a carboxyl group on the 5-carbon ring structure. Potentially 

this negative charge could aid in a similar manner as suggested for the lipid A phosphate in 

TLR4 complex formation. The charge on sialic acid could potentially modify the strength of 

receptor ligation. Interestingly, the sialic acid on LOS from other bacterial species, such as 

Histophilis somni, has been shown to reduce TLR4 signalling in murine macrophages 

(Howard et al. 2011). This suggests that the impact of LPS/LOS sialylation may be 

dependent on the host species, which raises interesting questions as to the possible 

differences between TLR4 signalling between chickens and humans. The increased 

activation of human TLR4 by sialylated LOS may have evolved to counter the other immune 

evasion benefits of sialylation. It is interesting that other surface structures of C. jejuni 

contain sialic acid-like structures, which potentially confer similar advantages of immune 

evasion seen with sialic-acid whilst not increasing activation of TLRs.      
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A recent phylogenomic study showed that ~20% of microbial genomes examined contained 

genes encoding sialic acid biosynthesis pathways (Lewis et al. 2009). Interestingly, sialic-

acid biosynthesis pathways are most commonly found in ε-proteobacteria, a class of 

bacteria that often associate with animals. Until recently it was believed that de novo sialic 

acid-synthesis was limited only to bacterial strains that associate with animals and that this 

genetic information was inherited by horizontal gene transfer from animal cells. It is now 

appreciated that the genetic loci for sialic acid biosynthesis is more ancient and that 

bacteria may have evolved this capability from mutation of the Leg biosynthesis pathway.  

Other bacterial carbohydrate structures have been shown to be important in manipulating 

intestinal immune responses. In germ-free mice H. hepaticus drives colitis due to impaired 

development of CD4+ T cells. These mice are protected from colitis if treated with B. fragilis 

polysaccharide A (PSA) due to the inhibition of Th17 cells and expansion of Tregs 

(Mazmanian et al. 2008). Interestingly, the PSA does not alter numbers of H. hepaticus in 

the intestine. Protection from H. hepaticus—mediated colitis by PSA is dependent on the 

production of IL-10 from CD4+ T cells. This suggests that manipulation of IL-10 signalling can 

alter intestinal pathology generated by particular bacteria.   

In conclusion, this study has shown how the carbohydrate moieties of two critical C. jejuni 

surface structures, the flagella and LOS, modulate host innate immune responses. Firstly, 

the modification of the flagella with derivatives of pseudaminic acid drives high IL-10 

responses by the manipulation of the TLR-activated MAPK pathway. This potentially is a 

down-stream effect of Siglec-10 engagement however a direct connection between 

receptor ligation and IL-10 remains to be proven. Secondly, sialylation of the LOS drives 

higher pro-inflammatory cytokine responses and is dependent on the phylogenetic source 

of the C. jejuni. This may be an evolutionary feature of human TLR4 to counter the immune 

dampening effects of bacterial sialylation. Many more questions remain as to how the 

carbohydrate surface structure of C. jejuni modulates immune responses. 

 

  



206 
 

 

 

 

 

 

 

 

Chapter 8.  

                Bibliography          

  



207 
 

Abrahams, G.L. & Hensel, M. 2006. Manipulating cellular transport and immune responses: 
dynamic interactions between intracellular Salmonella enterica and its host cells. Cell 
Microbiol., 8, (5) 728-737 available from: PM:16611223  

Al-Sayeqh, A.F., Loughlin, M.F., Dillon, E., Mellits, K.H., & Connerton, I.F. 2010. 
Campylobacter jejuni activates NF-kappaB independently of TLR2, TLR4, Nod1 and Nod2 
receptors. Microb.Pathog., 49, (5) 294-304 available from: PM:20599492  

Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T., & Saltiel, A.R. 1995. PD 098059 is a specific 
inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. 
J.Biol.Chem., 270, (46) 27489-27494 available from: PM:7499206  

Allos, B.M. 2001. Campylobacter jejuni Infections: update on emerging issues and trends. 
Clin.Infect.Dis., 32, (8) 1201-1206 available from: PM:11283810  

Ananieva, O., Darragh, J., Johansen, C., Carr, J.M., McIlrath, J., Park, J.M., Wingate, A., 
Monk, C.E., Toth, R., Santos, S.G., Iversen, L., & Arthur, J.S. 2008. The kinases MSK1 and 
MSK2 act as negative regulators of Toll-like receptor signaling. Nat.Immunol., 9, (9) 1028-
1036 available from: PM:18690222  

Andersen-Nissen, E., Smith, K.D., Strobe, K.L., Barrett, S.L., Cookson, B.T., Logan, S.M., & 
Aderem, A. 2005. Evasion of Toll-like receptor 5 by flagellated bacteria. 
Proc.Natl.Acad.Sci.U.S.A, 102, (26) 9247-9252 available from: PM:15956202  

Ando, M., Tu, W., Nishijima, K., & Iijima, S. 2008. Siglec-9 enhances IL-10 production in 
macrophages via tyrosine-based motifs. Biochem.Biophys.Res.Commun., 369, (3) 878-883 
available from: PM:18325328  

Andus, T., Geiger, T., Hirano, T., Kishimoto, T., & Heinrich, P.C. 1988. Action of recombinant 
human interleukin 6, interleukin 1 beta and tumor necrosis factor alpha on the mRNA 
induction of acute-phase proteins. Eur.J.Immunol., 18, (5) 739-746 available from: 
PM:2454192  

Angata, T., Hingorani, R., Varki, N.M., & Varki, A. 2001. Cloning and characterization of a 
novel mouse Siglec, mSiglec-F: differential evolution of the mouse and human (CD33) 
Siglec-3-related gene clusters. J.Biol.Chem., 276, (48) 45128-45136 available from: 
PM:11579105  

Aspinall, G.O., McDonald, A.G., Pang, H., Kurjanczyk, L.A., & Penner, J.L. 1994. 
Lipopolysaccharides of Campylobacter jejuni serotype O:19: structures of core 
oligosaccharide regions from the serostrain and two bacterial isolates from patients with 
the Guillain-Barre syndrome. Biochemistry, 33, (1) 241-249 available from: PM:8286348  

Avril, T., Wagner, E.R., Willison, H.J., & Crocker, P.R. 2006. Sialic acid-binding 
immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed 
on Campylobacter jejuni lipooligosaccharides. Infect.Immun., 74, (7) 4133-4141 available 
from: PM:16790787  

Axelsson-Olsson, D., Svensson, L., Olofsson, J., Salomon, P., Waldenstrom, J., Ellstrom, P., & 
Olsen, B. 2010. Increase in acid tolerance of Campylobacter jejuni through coincubation 
with amoebae. Appl.Environ.Microbiol., 76, (13) 4194-4200 available from: PM:20453130  



208 
 

Baar, C., Eppinger, M., Raddatz, G., Simon, J., Lanz, C., Klimmek, O., Nandakumar, R., Gross, 
R., Rosinus, A., Keller, H., Jagtap, P., Linke, B., Meyer, F., Lederer, H., & Schuster, S.C. 2003. 
Complete genome sequence and analysis of Wolinella succinogenes. 
Proc.Natl.Acad.Sci.U.S.A, 100, (20) 11690-11695 available from: PM:14500908  

Babakhani, F.K., Bradley, G.A., & Joens, L.A. 1993. Newborn piglet model for 
campylobacteriosis. Infect.Immun., 61, (8) 3466-3475 available from: PM:8335377  

Bacon, D.J., Szymanski, C.M., Burr, D.H., Silver, R.P., Alm, R.A., & Guerry, P. 2001. A phase-
variable capsule is involved in virulence of Campylobacter jejuni 81-176. Mol.Microbiol., 40, 
(3) 769-777 available from: PM:11359581  

Bax, M., Kuijf, M.L., Heikema, A.P., van, R.W., Bruijns, S.C., Garcia-Vallejo, J.J., Crocker, P.R., 
Jacobs, B.C., van Vliet, S.J., & van, K.Y. 2011. Campylobacter jejuni lipooligosaccharides 
modulate dendritic cell-mediated T cell polarization in a sialic acid linkage-dependent 
manner. Infect.Immun., 79, (7) 2681-2689 available from: PM:21502591  

Bennett, B.L., Sasaki, D.T., Murray, B.W., O'Leary, E.C., Sakata, S.T., Xu, W., Leisten, J.C., 
Motiwala, A., Pierce, S., Satoh, Y., Bhagwat, S.S., Manning, A.M., & Anderson, D.W. 2001. 
SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc.Natl.Acad.Sci.U.S.A, 
98, (24) 13681-13686 available from: PM:11717429  

Bereswill, S., Fischer, A., Plickert, R., Haag, L.M., Otto, B., Kuhl, A.A., Dashti, J.I., Zautner, 
A.E., Munoz, M., Loddenkemper, C., Gross, U., Gobel, U.B., & Heimesaat, M.M. 2011. Novel 
murine infection models provide deep insights into the "menage a trois" of Campylobacter 
jejuni, microbiota and host innate immunity. PLoS.One., 6, (6) e20953 available from: 
PM:21698299  

Bergman, M.P., Engering, A., Smits, H.H., van Vliet, S.J., van Bodegraven, A.A., Wirth, H.P., 
Kapsenberg, M.L., Vandenbroucke-Grauls, C.M., van, K.Y., & Appelmelk, B.J. 2004. 
Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-
variable interaction between lipopolysaccharide and DC-SIGN. J.Exp.Med., 200, (8) 979-990 
available from: PM:15492123  

Bertrand, M.J., Doiron, K., Labbe, K., Korneluk, R.G., Barker, P.A., & Saleh, M. 2009. Cellular 
inhibitors of apoptosis cIAP1 and cIAP2 are required for innate immunity signaling by the 
pattern recognition receptors NOD1 and NOD2. Immunity., 30, (6) 789-801 available from: 
PM:19464198  

Black, R.E., Levine, M.M., Clements, M.L., Hughes, T.P., & Blaser, M.J. 1988. Experimental 
Campylobacter jejuni infection in humans. J.Infect.Dis., 157, (3) 472-479 available from: 
PM:3343522  

Blander, J.M. & Medzhitov, R. 2004. Regulation of phagosome maturation by signals from 
toll-like receptors. Science, 304, (5673) 1014-1018 available from: PM:15143282  

Blaser, M.J. 1997. Epidemiologic and clinical features of Campylobacter jejuni infections. 
J.Infect.Dis., 176 Suppl 2, S103-S105 available from: PM:9396691  

Blaser, M.J., Glass, R.I., Huq, M.I., Stoll, B., Kibriya, G.M., & Alim, A.R. 1980. Isolation of 
Campylobacter fetus subsp. jejuni from Bangladeshi children. J.Clin.Microbiol., 12, (6) 744-
747 available from: PM:7309841  



209 
 

Blaser, M.J., Reller, L.B., Luechtefeld, N.W., & Wang, W.L. 1982. Campylobacter enteritis in 
Denver. West J.Med., 136, (4) 287-290 available from: PM:7090379  

Blaser, M.J., Smith, P.F., & Kohler, P.F. 1985. Susceptibility of Campylobacter isolates to the 
bactericidal activity of human serum. J.Infect.Dis., 151, (2) 227-235 available from: 
PM:3968449  

Boele, L.C., Bajramovic, J.J., de Vries, A.M., Voskamp-Visser, I.A., Kaman, W.E., & van der 
Kleij, D. 2009. Activation of Toll-like receptors and dendritic cells by a broad range of 
bacterial molecules. Cell Immunol., 255, (1-2) 17-25 available from: PM:18926526  

Borleffs, J.C., Schellekens, J.F., Brouwer, E., & Rozenberg-Arska, M. 1993. Use of an 
immunoglobulin M containing preparation for treatment of two hypogammaglobulinemic 
patients with persistent Campylobacter jejuni infection. Eur.J.Clin.Microbiol.Infect.Dis., 12, 
(10) 772-775 available from: PM:8307048  

Boyd, C.R., Orr, S.J., Spence, S., Burrows, J.F., Elliott, J., Carroll, H.P., Brennan, K., Ni, G.J., 
Coulter, W.A., Jones, C., Crocker, P.R., Johnston, J.A., & Jefferies, C.A. 2009. Siglec-E is up-
regulated and phosphorylated following lipopolysaccharide stimulation in order to limit 
TLR-driven cytokine production. J.Immunol., 183, (12) 7703-7709 available from: 
PM:19933851  

Bras, A.M. & Ketley, J.M. 1999. Transcellular translocation of Campylobacter jejuni across 
human polarised epithelial monolayers. FEMS Microbiol.Lett., 179, (2) 209-215 available 
from: PM:10518717  

Brodsky, I.E., Palm, N.W., Sadanand, S., Ryndak, M.B., Sutterwala, F.S., Flavell, R.A., Bliska, 
J.B., & Medzhitov, R. 2010. A Yersinia effector protein promotes virulence by preventing 
inflammasome recognition of the type III secretion system. Cell Host.Microbe, 7, (5) 376-
387 available from: PM:20478539  

Caldwell, M.B., Guerry, P., Lee, E.C., Burans, J.P., & Walker, R.I. 1985. Reversible expression 
of flagella in Campylobacter jejuni. Infect.Immun., 50, (3) 941-943 available from: 
PM:4066041  

Cao, H. & Crocker, P.R. 2011a. Evolution of CD33-related siglecs: regulating host immune 
functions and escaping pathogen exploitation? Immunology, 132, (1) 18-26 available from: 
PM:21070233  

Cao, H. & Crocker, P.R. 2011b. Evolution of CD33-related siglecs: regulating host immune 
functions and escaping pathogen exploitation? Immunology, 132, (1) 18-26 available from: 
PM:21070233  

Carlin, A.F., Chang, Y.C., Areschoug, T., Lindahl, G., Hurtado-Ziola, N., King, C.C., Varki, A., & 
Nizet, V. 2009a. Group B Streptococcus suppression of phagocyte functions by protein-
mediated engagement of human Siglec-5. J.Exp.Med., 206, (8) 1691-1699 available from: 
PM:19596804  

Carlin, A.F., Uchiyama, S., Chang, Y.C., Lewis, A.L., Nizet, V., & Varki, A. 2009b. Molecular 
mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 
and dampen the innate immune response. Blood, 113, (14) 3333-3336 available from: 
PM:19196661  



210 
 

Cawthraw, S.A., Lind, L., Kaijser, B., & Newell, D.G. 2000. Antibodies, directed towards 
Campylobacter jejuni antigens, in sera from poultry abattoir workers. Clin.Exp.Immunol., 
122, (1) 55-60 available from: PM:11012618  

Champion, O.L., Gaunt, M.W., Gundogdu, O., Elmi, A., Witney, A.A., Hinds, J., Dorrell, N., & 
Wren, B.W. 2005. Comparative phylogenomics of the food-borne pathogen Campylobacter 
jejuni reveals genetic markers predictive of infection source. Proc.Natl.Acad.Sci.U.S.A, 102, 
(44) 16043-16048 available from: PM:16230626  

Champion, O.L., Karlyshev, A.V., Senior, N.J., Woodward, M., La, R.R., Howard, S.L., Wren, 
B.W., & Titball, R.W. 2010. Insect infection model for Campylobacter jejuni reveals that O-
methyl phosphoramidate has insecticidal activity. J.Infect.Dis., 201, (5) 776-782 available 
from: PM:20113177  

Chang, C. & Miller, J.F. 2006. Campylobacter jejuni colonization of mice with limited enteric 
flora. Infect.Immun., 74, (9) 5261-5271 available from: PM:16926420  

Chen, C.H., Floyd, H., Olson, N.E., Magaletti, D., Li, C., Draves, K., & Clark, E.A. 2006. 
Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and 
cytokine production. Blood, 107, (4) 1459-1467 available from: PM:16239426  

Chen, G.Y., Tang, J., Zheng, P., & Liu, Y. 2009. CD24 and Siglec-10 selectively repress tissue 
damage-induced immune responses. Science, 323, (5922) 1722-1725 available from: 
PM:19264983  

Cheung, P.C., Campbell, D.G., Nebreda, A.R., & Cohen, P. 2003. Feedback control of the 
protein kinase TAK1 by SAPK2a/p38alpha. EMBO J., 22, (21) 5793-5805 available from: 
PM:14592977  

Coombes, J.L., Siddiqui, K.R., Arancibia-Carcamo, C.V., Hall, J., Sun, C.M., Belkaid, Y., & 
Powrie, F. 2007. A functionally specialized population of mucosal CD103+ DCs induces 
Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. 
J.Exp.Med., 204, (8) 1757-1764 available from: PM:17620361  

Crocker, P.R., Paulson, J.C., & Varki, A. 2007. Siglecs and their roles in the immune system. 
Nat.Rev.Immunol., 7, (4) 255-266 available from: PM:17380156  

Crocker, P.R. & Redelinghuys, P. 2008. Siglecs as positive and negative regulators of the 
immune system. Biochem.Soc.Trans., 36, (Pt 6) 1467-1471 available from: PM:19021577  

Cuenda, A., Rouse, J., Doza, Y.N., Meier, R., Cohen, P., Gallagher, T.F., Young, P.R., & Lee, 
J.C. 1995. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated 
by cellular stresses and interleukin-1. FEBS Lett., 364, (2) 229-233 available from: 
PM:7750577  

Cullen, T.W. & Trent, M.S. 2010. A link between the assembly of flagella and 
lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. 
Proc.Natl.Acad.Sci.U.S.A, 107, (11) 5160-5165 available from: PM:20194750  

Daigneault, M., Preston, J.A., Marriott, H.M., Whyte, M.K., & Dockrell, D.H. 2010. The 
identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and 
monocyte-derived macrophages. PLoS.One., 5, (1) e8668 available from: PM:20084270  



211 
 

Davies, A.P., Gebhart, C.J., & Meric, S.A. 1984. Campylobacter-associated chronic diarrhea 
in a dog. J.Am.Vet.Med.Assoc., 184, (4) 469-471 available from: PM:6698881  

de Zoete, M.R., Keestra, A.M., Roszczenko, P., & van Putten, J.P. 2010. Activation of human 
and chicken toll-like receptors by Campylobacter spp. Infect.Immun., 78, (3) 1229-1238 
available from: PM:20038539  

Denda-Nagai, K., Aida, S., Saba, K., Suzuki, K., Moriyama, S., Oo-Puthinan, S., Tsuiji, M., 
Morikawa, A., Kumamoto, Y., Sugiura, D., Kudo, A., Akimoto, Y., Kawakami, H., Bovin, N.V., 
& Irimura, T. 2010. Distribution and function of macrophage galactose-type C-type lectin 2 
(MGL2/CD301b): efficient uptake and presentation of glycosylated antigens by dendritic 
cells. J.Biol.Chem., 285, (25) 19193-19204 available from: PM:20304916  

Denning, T.L., Wang, Y.C., Patel, S.R., Williams, I.R., & Pulendran, B. 2007. Lamina propria 
macrophages and dendritic cells differentially induce regulatory and interleukin 17-
producing T cell responses. Nat.Immunol., 8, (10) 1086-1094 available from: PM:17873879  

Ding, C., Liu, Y., Wang, Y., Park, B.K., Wang, C.Y., Zheng, P., & Liu, Y. 2007. Siglecg limits the 
size of B1a B cell lineage by down-regulating NFkappaB activation. PLoS.One., 2, (10) e997 
available from: PM:17912374  

Doig, P., Kinsella, N., Guerry, P., & Trust, T.J. 1996. Characterization of a post-translational 
modification of Campylobacter flagellin: identification of a sero-specific glycosyl moiety. 
Mol.Microbiol., 19, (2) 379-387 available from: PM:8825782  

Doorduyn, Y., van, P.W., Siezen, C.L., Van Der Horst, F., Van Duynhoven, Y.T., Hoebee, B., & 
Janssen, R. 2008. Novel insight in the association between salmonellosis or 
campylobacteriosis and chronic illness, and the role of host genetics in susceptibility to 
these diseases. Epidemiol.Infect., 136, (9) 1225-1234 available from: PM:18062835  

Dorrell, N., Mangan, J.A., Laing, K.G., Hinds, J., Linton, D., Al-Ghusein, H., Barrell, B.G., 
Parkhill, J., Stoker, N.G., Karlyshev, A.V., Butcher, P.D., & Wren, B.W. 2001. Whole genome 
comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals 
extensive genetic diversity. Genome Res., 11, (10) 1706-1715 available from: PM:11591647  

Dzieciatkowska, M., Brochu, D., van, B.A., Heikema, A.P., Yuki, N., Houliston, R.S., Richards, 
J.C., Gilbert, M., & Li, J. 2007. Mass spectrometric analysis of intact lipooligosaccharide: 
direct evidence for O-acetylated sialic acids and discovery of O-linked glycine expressed by 
Campylobacter jejuni. Biochemistry, 46, (50) 14704-14714 available from: PM:18034462  

Edwards, L.A., Nistala, K., Mills, D.C., Stephenson, H.N., Zilbauer, M., Wren, B.W., Dorrell, 
N., Lindley, K.J., Wedderburn, L.R., & Bajaj-Elliott, M. 2010. Delineation of the innate and 
adaptive T-cell immune outcome in the human host in response to Campylobacter jejuni 
infection. PLoS.One., 5, (11) e15398 available from: PM:21085698  

Erdmann, H., Steeg, C., Koch-Nolte, F., Fleischer, B., & Jacobs, T. 2009. Sialylated ligands on 
pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E). Cell 
Microbiol., 11, (11) 1600-1611 available from: PM:19552697  

Escors, D., Lopes, L., Lin, R., Hiscott, J., Akira, S., Davis, R.J., & Collins, M.K. 2008. Targeting 
dendritic cell signaling to regulate the response to immunization. Blood, 111, (6) 3050-3061 
available from: PM:18180378  



212 
 

Eucker, T.P. & Konkel, M.E. 2011. The cooperative action of bacterial fibronectin-binding 
proteins and secreted proteins promote maximal Campylobacter jejuni invasion of host 
cells by stimulating membrane ruffling. Cell Microbiol. available from: PM:21999233  

Everest, P.H., Cole, A.T., Hawkey, C.J., Knutton, S., Goossens, H., Butzler, J.P., Ketley, J.M., & 
Williams, P.H. 1993. Roles of leukotriene B4, prostaglandin E2, and cyclic AMP in 
Campylobacter jejuni-induced intestinal fluid secretion. Infect.Immun., 61, (11) 4885-4887 
available from: PM:8406889  

Everest, P.H., Goossens, H., Butzler, J.P., Lloyd, D., Knutton, S., Ketley, J.M., & Williams, P.H. 
1992. Differentiated Caco-2 cells as a model for enteric invasion by Campylobacter jejuni 
and C. coli. J.Med.Microbiol., 37, (5) 319-325 available from: PM:1433253  

Evrard, B., Balestrino, D., Dosgilbert, A., Bouya-Gachancard, J.L., Charbonnel, N., Forestier, 
C., & Tridon, A. 2010. Roles of capsule and lipopolysaccharide O antigen in interactions of 
human monocyte-derived dendritic cells and Klebsiella pneumoniae. Infect.Immun., 78, (1) 
210-219 available from: PM:19841082  

Ewing, C.P., Andreishcheva, E., & Guerry, P. 2009. Functional characterization of flagellin 
glycosylation in Campylobacter jejuni 81-176. J.Bacteriol., 191, (22) 7086-7093 available 
from: PM:19749047  

Favata, M.F., Horiuchi, K.Y., Manos, E.J., Daulerio, A.J., Stradley, D.A., Feeser, W.S., Van Dyk, 
D.E., Pitts, W.J., Earl, R.A., Hobbs, F., Copeland, R.A., Magolda, R.L., Scherle, P.A., & 
Trzaskos, J.M. 1998. Identification of a novel inhibitor of mitogen-activated protein kinase 
kinase. J.Biol.Chem., 273, (29) 18623-18632 available from: PM:9660836  

Fernandez-Cruz, A., Munoz, P., Mohedano, R., Valerio, M., Marin, M., Alcala, L., Rodriguez-
Creixems, M., Cercenado, E., & Bouza, E. 2010. Campylobacter bacteremia: clinical 
characteristics, incidence, and outcome over 23 years. Medicine (Baltimore), 89, (5) 319-
330 available from: PM:20827109  

Fox, J.G., Claps, M., & Beaucage, C.M. 1986. Chronic diarrhea associated with 
Campylobacter jejuni infection in a cat. J.Am.Vet.Med.Assoc., 189, (4) 455-456 available 
from: PM:3759618  

Franchi, L., Amer, A., Body-Malapel, M., Kanneganti, T.D., Ozoren, N., Jagirdar, R., Inohara, 
N., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E.P., & Nunez, G. 2006. Cytosolic flagellin 
requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected 
macrophages. Nat.Immunol., 7, (6) 576-582 available from: PM:16648852  

Friis, L.M., Keelan, M., & Taylor, D.E. 2009. Campylobacter jejuni drives MyD88-
independent interleukin-6 secretion via Toll-like receptor 2. Infect.Immun., 77, (4) 1553-
1560 available from: PM:19139198  

Fritz, J.H., Girardin, S.E., Fitting, C., Werts, C., Mengin-Lecreulx, D., Caroff, M., Cavaillon, 
J.M., Philpott, D.J., & Adib-Conquy, M. 2005. Synergistic stimulation of human monocytes 
and dendritic cells by Toll-like receptor 4 and. Eur.J.Immunol., 35, (8) 2459-2470 available 
from: PM:16021602  

Galkin, V.E., Yu, X., Bielnicki, J., Heuser, J., Ewing, C.P., Guerry, P., & Egelman, E.H. 2008. 
Divergence of quaternary structures among bacterial flagellar filaments. Science, 320, 
(5874) 382-385 available from: PM:18420936  



213 
 

Gardner, T.J., Fitzgerald, C., Xavier, C., Klein, R., Pruckler, J., Stroika, S., & McLaughlin, J.B. 
2011. Outbreak of campylobacteriosis associated with consumption of raw peas. 
Clin.Infect.Dis., 53, (1) 26-32 available from: PM:21653299  

Gautier, G., Humbert, M., Deauvieau, F., Scuiller, M., Hiscott, J., Bates, E.E., Trinchieri, G., 
Caux, C., & Garrone, P. 2005. A type I interferon autocrine-paracrine loop is involved in Toll-
like receptor-induced interleukin-12p70 secretion by dendritic cells. J.Exp.Med., 201, (9) 
1435-1446 available from: PM:15851485  

Ghosh, S. & Hayden, M.S. 2008. New regulators of NF-kappaB in inflammation. 
Nat.Rev.Immunol., 8, (11) 837-848 available from: PM:18927578  

Gilbert, M., Brisson, J.R., Karwaski, M.F., Michniewicz, J., Cunningham, A.M., Wu, Y., Young, 
N.M., & Wakarchuk, W.W. 2000. Biosynthesis of ganglioside mimics in Campylobacter 
jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of 
model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c 
NMR analysis. J.Biol.Chem., 275, (6) 3896-3906 available from: PM:10660542  

Gilbert, M., Karwaski, M.F., Bernatchez, S., Young, N.M., Taboada, E., Michniewicz, J., 
Cunningham, A.M., & Wakarchuk, W.W. 2002. The genetic bases for the variation in the 
lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of 
sialylated ganglioside mimics in the core oligosaccharide. J.Biol.Chem., 277, (1) 327-337 
available from: PM:11689567  

Godschalk, P.C., Heikema, A.P., Gilbert, M., Komagamine, T., Ang, C.W., Glerum, J., Brochu, 
D., Li, J., Yuki, N., Jacobs, B.C., van, B.A., & Endtz, H.P. 2004. The crucial role of 
Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barre 
syndrome. J.Clin.Invest, 114, (11) 1659-1665 available from: PM:15578098  

Golden, N.J. & Acheson, D.W. 2002. Identification of motility and autoagglutination 
Campylobacter jejuni mutants by random transposon mutagenesis. Infect.Immun., 70, (4) 
1761-1771 available from: PM:11895937  

Gomez-Gomez, L. & Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the 
perception of the bacterial elicitor flagellin in Arabidopsis. Mol.Cell, 5, (6) 1003-1011 
available from: PM:10911994  

Goodwin CS, Armstrong JA, Chilvers T, & Harper WS. Transfer of Campylobacter pylori and 
Campylobacter mustelae to Helicobacter gen. nov. as Helicobacter pylori comb. nov. and 
Helicobacter mustelae comb. nov., Respectively. Int.J.Syst.Bacteriol. 39[4]. 1989.  
Ref Type: Generic 

Goon, S., Kelly, J.F., Logan, S.M., Ewing, C.P., & Guerry, P. 2003. Pseudaminic acid, the 
major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. 
Mol.Microbiol., 50, (2) 659-671 available from: PM:14617187  

Gradel, K.O., Nielsen, H.L., Schonheyder, H.C., Ejlertsen, T., Kristensen, B., & Nielsen, H. 
2009. Increased short- and long-term risk of inflammatory bowel disease after salmonella 
or campylobacter gastroenteritis. Gastroenterology, 137, (2) 495-501 available from: 
PM:19361507  

Gringhuis, S.I., den, D.J., Litjens, M., van Het, H.B., van, K.Y., & Geijtenbeek, T.B. 2007. C-
type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent 



214 
 

acetylation of transcription factor NF-kappaB. Immunity., 26, (5) 605-616 available from: 
PM:17462920  

Gringhuis, S.I., den, D.J., Litjens, M., van, d., V, & Geijtenbeek, T.B. 2009. Carbohydrate-
specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium 
tuberculosis, HIV-1 and Helicobacter pylori. Nat.Immunol., 10, (10) 1081-1088 available 
from: PM:19718030  

Gringhuis, S.I., Kaptein, T.M., Wevers, B.A., Theelen, B., van, d., V, Boekhout, T., & 
Geijtenbeek, T.B. 2012. Dectin-1 is an extracellular pathogen sensor for the induction and 
processing of IL-1beta via a noncanonical caspase-8 inflammasome. Nat.Immunol. available 
from: PM:22267217  

Guerry, P., Alm, R.A., Power, M.E., Logan, S.M., & Trust, T.J. 1991. Role of two flagellin 
genes in Campylobacter motility. J.Bacteriol., 173, (15) 4757-4764 available from: 
PM:1856171  

Guerry, P., Ewing, C.P., Schirm, M., Lorenzo, M., Kelly, J., Pattarini, D., Majam, G., Thibault, 
P., & Logan, S. 2006. Changes in flagellin glycosylation affect Campylobacter 
autoagglutination and virulence. Mol.Microbiol., 60, (2) 299-311 available from: 
PM:16573682  

Guerry, P., Szymanski, C.M., Prendergast, M.M., Hickey, T.E., Ewing, C.P., Pattarini, D.L., & 
Moran, A.P. 2002. Phase variation of Campylobacter jejuni 81-176 lipooligosaccharide 
affects ganglioside mimicry and invasiveness in vitro. Infect.Immun., 70, (2) 787-793 
available from: PM:11796612  

Gurtler, M., Alter, T., Kasimir, S., & Fehlhaber, K. 2005. The importance of Campylobacter 
coli in human campylobacteriosis: prevalence and genetic characterization. 
Epidemiol.Infect., 133, (6) 1081-1087 available from: PM:16274505  

Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, K.M., & 
Weaver, C.T. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage 
distinct from the T helper type 1 and 2 lineages. Nat.Immunol., 6, (11) 1123-1132 available 
from: PM:16200070  

Havelaar, A.H., van, P.W., Ang, C.W., Wagenaar, J.A., van Putten, J.P., Gross, U., & Newell, 
D.G. 2009. Immunity to Campylobacter: its role in risk assessment and epidemiology. Crit 
Rev.Microbiol., 35, (1) 1-22 available from: PM:19514906  

Heikema, A.P., Bergman, M.P., Richards, H., Crocker, P.R., Gilbert, M., Samsom, J.N., van 
Wamel, W.J., Endtz, H.P., & van, B.A. 2010. Characterization of the specific interaction 
between sialoadhesin and sialylated Campylobacter jejuni lipooligosaccharides. 
Infect.Immun., 78, (7) 3237-3246 available from: PM:20421384  

Hendrixson, D.R. & DiRita, V.J. 2004. Identification of Campylobacter jejuni genes involved 
in commensal colonization of the chick gastrointestinal tract. Mol.Microbiol., 52, (2) 471-
484 available from: PM:15066034  

Hermans, D., Pasmans, F., Heyndrickx, M., Van, I.F., Van, D.K., & Haesebrouck, F. 2011. A 
tolerogenic mucosal immune response leads to persistent Campylobacter jejuni 
colonization in the chicken gut. Crit Rev.Microbiol. available from: PM:21995731  



215 
 

Hotter, G.S., Li, I.H., & French, N.P. 2010. Binary genomotyping using lipooligosaccharide 
biosynthesis genes distinguishes between Campylobacter jejuni isolates within poultry-
associated multilocus sequence types. Epidemiol.Infect., 138, (7) 992-1003 available from: 
PM:19883521  

Houliston, R.S., Endtz, H.P., Yuki, N., Li, J., Jarrell, H.C., Koga, M., van, B.A., Karwaski, M.F., 
Wakarchuk, W.W., & Gilbert, M. 2006. Identification of a sialate O-acetyltransferase from 
Campylobacter jejuni: demonstration of direct transfer to the C-9 position of 
terminalalpha-2, 8-linked sialic acid. J.Biol.Chem., 281, (17) 11480-11486 available from: 
PM:16481326  

Houliston, R.S., Vinogradov, E., Dzieciatkowska, M., Li, J., St, M.F., Karwaski, M.F., Brochu, 
D., Jarrell, H.C., Parker, C.T., Yuki, N., Mandrell, R.E., & Gilbert, M. 2011. 
Lipooligosaccharide of Campylobacter jejuni: similarity with multiple types of mammalian 
glycans beyond gangliosides. J.Biol.Chem., 286, (14) 12361-12370 available from: 
PM:21257763  

Howard, M.D., Willis, L., Wakarchuk, W., St, M.F., Cox, A., Horne, W.T., Hontecillas, R., 
Bassaganya-Riera, J., Lorenz, E., & Inzana, T.J. 2011. Genetics and molecular specificity of 
sialylation of Histophilus somni lipooligosaccharide (LOS) and the effect of LOS sialylation 
on Toll-like receptor-4 signaling. Vet.Microbiol., 153, (1-2) 163-172 available from: 
PM:21482041  

Howard, S.L., Jagannathan, A., Soo, E.C., Hui, J.P., Aubry, A.J., Ahmed, I., Karlyshev, A., Kelly, 
J.F., Jones, M.A., Stevens, M.P., Logan, S.M., & Wren, B.W. 2009. Campylobacter jejuni 
glycosylation island important in cell charge, legionaminic acid biosynthesis, and 
colonization of chickens. Infect.Immun., 77, (6) 2544-2556 available from: PM:19307210  

Hu, L., Bray, M.D., Osorio, M., & Kopecko, D.J. 2006. Campylobacter jejuni induces 
maturation and cytokine production in human dendritic cells. Infect.Immun., 74, (5) 2697-
2705 available from: PM:16622206  

Hu, L. & Hickey, T.E. 2005. Campylobacter jejuni induces secretion of proinflammatory 
chemokines from human intestinal epithelial cells. Infect.Immun., 73, (7) 4437-4440 
available from: PM:15972545  

Hugdahl, M.B., Beery, J.T., & Doyle, M.P. 1988. Chemotactic behavior of Campylobacter 
jejuni. Infect.Immun., 56, (6) 1560-1566 available from: PM:3372020  

Jagannathan, A., Constantinidou, C., & Penn, C.W. 2001. Roles of rpoN, fliA, and flgR in 
expression of flagella in Campylobacter jejuni. J.Bacteriol., 183, (9) 2937-2942 available 
from: PM:11292815  

Jagusztyn-Krynicka, E.K., Laniewski, P., & Wyszynska, A. 2009. Update on Campylobacter 
jejuni vaccine development for preventing human campylobacteriosis. 
Expert.Rev.Vaccines., 8, (5) 625-645 available from: PM:19397419  

Janeway, C.A., Jr. 1989. Approaching the asymptote? Evolution and revolution in 
immunology. Cold Spring Harb.Symp.Quant.Biol., 54 Pt 1, 1-13 available from: PM:2700931  

Janssen, R., Krogfelt, K.A., Cawthraw, S.A., van, P.W., Wagenaar, J.A., & Owen, R.J. 2008. 
Host-pathogen interactions in Campylobacter infections: the host perspective. 
Clin.Microbiol.Rev., 21, (3) 505-518 available from: PM:18625685  



216 
 

Jeffrey, K.L., Brummer, T., Rolph, M.S., Liu, S.M., Callejas, N.A., Grumont, R.J., Gillieron, C., 
Mackay, F., Grey, S., Camps, M., Rommel, C., Gerondakis, S.D., & Mackay, C.R. 2006. 
Positive regulation of immune cell function and inflammatory responses by phosphatase 
PAC-1. Nat.Immunol., 7, (3) 274-283 available from: PM:16474395  

Jennings, J.L., Sait, L.C., Perrett, C.A., Foster, C., Williams, L.K., Humphrey, T.J., & Cogan, T.A. 
2011. Campylobacter jejuni is associated with, but not sufficient to cause vibrionic hepatitis 
in chickens. Vet.Microbiol., 149, (1-2) 193-199 available from: PM:21112163  

Jeon, B., Muraoka, W., Scupham, A., & Zhang, Q. 2009. Roles of lipooligosaccharide and 
capsular polysaccharide in antimicrobial resistance and natural transformation of 
Campylobacter jejuni. J.Antimicrob.Chemother., 63, (3) 462-468 available from: 
PM:19147521  

Jess, T., Simonsen, J., Nielsen, N.M., Jorgensen, K.T., Bager, P., Ethelberg, S., & Frisch, M. 
2011. Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel 
disease. Gut, 60, (3) 318-324 available from: PM:21193449  

Jin, S., Song, Y.C., Emili, A., Sherman, P.M., & Chan, V.L. 2003. JlpA of Campylobacter jejuni 
interacts with surface-exposed heat shock protein 90alpha and triggers signalling pathways 
leading to the activation of NF-kappaB and p38 MAP kinase in epithelial cells. Cell 
Microbiol., 5, (3) 165-174 available from: PM:12614460  

Jones, F.S., Orcutt, M., & Little, R.B. 1931. VIBRIOS (VIBRIO JEJUNI, N.SP.) ASSOCIATED 
WITH INTESTINAL DISORDERS OF COWS AND CALVES. J.Exp.Med., 53, (6) 853-863 available 
from: PM:19869887  

Kamada, N., Hisamatsu, T., Okamoto, S., Chinen, H., Kobayashi, T., Sato, T., Sakuraba, A., 
Kitazume, M.T., Sugita, A., Koganei, K., Akagawa, K.S., & Hibi, T. 2008. Unique CD14 
intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-
gamma axis. J.Clin.Invest, 118, (6) 2269-2280 available from: PM:18497880  

Kanipes, M.I., Papp-Szabo, E., Guerry, P., & Monteiro, M.A. 2006. Mutation of waaC, 
encoding heptosyltransferase I in Campylobacter jejuni 81-176, affects the structure of 
both lipooligosaccharide and capsular carbohydrate. J.Bacteriol., 188, (9) 3273-3279 
available from: PM:16621820  

Kanipes, M.I., Tan, X., Akelaitis, A., Li, J., Rockabrand, D., Guerry, P., & Monteiro, M.A. 2008. 
Genetic analysis of lipooligosaccharide core biosynthesis in Campylobacter jejuni 81-176. 
J.Bacteriol., 190, (5) 1568-1574 available from: PM:18156268  

Kao, J.Y., Zhang, M., Miller, M.J., Mills, J.C., Wang, B., Liu, M., Eaton, K.A., Zou, W., Berndt, 
B.E., Cole, T.S., Takeuchi, T., Owyang, S.Y., & Luther, J. 2010. Helicobacter pylori immune 
escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. 
Gastroenterology, 138, (3) 1046-1054 available from: PM:19931266  

Kapperud, G., Lassen, J., Ostroff, S.M., & Aasen, S. 1992. Clinical features of sporadic 
Campylobacter infections in Norway. Scand.J.Infect.Dis., 24, (6) 741-749 available from: 
PM:1287808  

Karlyshev, A.V., Champion, O.L., Churcher, C., Brisson, J.R., Jarrell, H.C., Gilbert, M., Brochu, 
D., St, M.F., Li, J., Wakarchuk, W.W., Goodhead, I., Sanders, M., Stevens, K., White, B., 
Parkhill, J., Wren, B.W., & Szymanski, C.M. 2005. Analysis of Campylobacter jejuni capsular 



217 
 

loci reveals multiple mechanisms for the generation of structural diversity and the ability to 
form complex heptoses. Mol.Microbiol., 55, (1) 90-103 available from: PM:15612919  

Karlyshev, A.V., Everest, P., Linton, D., Cawthraw, S., Newell, D.G., & Wren, B.W. 2004. The 
Campylobacter jejuni general glycosylation system is important for attachment to human 
epithelial cells and in the colonization of chicks. Microbiology, 150, (Pt 6) 1957-1964 
available from: PM:15184581  

Karlyshev, A.V., Linton, D., Gregson, N.A., Lastovica, A.J., & Wren, B.W. 2000. Genetic and 
biochemical evidence of a Campylobacter jejuni capsular polysaccharide that accounts for 
Penner serotype specificity. Mol.Microbiol., 35, (3) 529-541 available from: PM:10672176  

Karlyshev, A.V., Linton, D., Gregson, N.A., & Wren, B.W. 2002. A novel paralogous gene 
family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. 
Microbiology-Sgm, 148, 473-480 available from: ISI:000173748500016  

Karlyshev, A.V., McCrossan, M.V., & Wren, B.W. 2001. Demonstration of polysaccharide 
capsule in Campylobacter jejuni using electron microscopy. Infect.Immun., 69, (9) 5921-
5924 available from: PM:11500474  

Kawai, T. & Akira, S. 2006. TLR signaling. Cell Death.Differ., 13, (5) 816-825 available from: 
PM:16410796  

Kemp, R., Leatherbarrow, A.J., Williams, N.J., Hart, C.A., Clough, H.E., Turner, J., Wright, E.J., 
& French, N.P. 2005. Prevalence and genetic diversity of Campylobacter spp. in 
environmental water samples from a 100-square-kilometer predominantly dairy farming 
area. Appl.Environ.Microbiol., 71, (4) 1876-1882 available from: PM:15812015  

Ketley, J.M. & Konkel, M.E. 2005. Campylobacter: Molecular & Cellular Biology. 

Kiehlbauch, J.A., Albach, R.A., Baum, L.L., & Chang, K.P. 1985. Phagocytosis of 
Campylobacter jejuni and its intracellular survival in mononuclear phagocytes. 
Infect.Immun., 48, (2) 446-451 available from: PM:3988342  

KING, E.O. 1957. Human infections with Vibrio fetus and a closely related vibrio. 
J.Infect.Dis., 101, (2) 119-128 available from: PM:13475869  

Kivi, E., Elima, K., Aalto, K., Nymalm, Y., Auvinen, K., Koivunen, E., Otto, D.M., Crocker, P.R., 
Salminen, T.A., Salmi, M., & Jalkanen, S. 2009. Human Siglec-10 can bind to vascular 
adhesion protein-1 and serves as its substrate. Blood, 114, (26) 5385-5392 available from: 
PM:19861682  

Konkel, M.E., Klena, J.D., Rivera-Amill, V., Monteville, M.R., Biswas, D., Raphael, B., & 
Mickelson, J. 2004. Secretion of virulence proteins from Campylobacter jejuni is dependent 
on a functional flagellar export apparatus. J.Bacteriol., 186, (11) 3296-3303 available from: 
PM:15150214  

Korlath, J.A., Osterholm, M.T., Judy, L.A., Forfang, J.C., & Robinson, R.A. 1985. A point-
source outbreak of campylobacteriosis associated with consumption of raw milk. 
J.Infect.Dis., 152, (3) 592-596 available from: PM:4031557  

Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K., & Muller, W. 1993. Interleukin-10-deficient 
mice develop chronic enterocolitis. Cell, 75, (2) 263-274 available from: PM:8402911  



218 
 

Kuijf, M.L., Samsom, J.N., van, R.W., Bax, M., Huizinga, R., Heikema, A.P., van Doorn, P.A., 
van, B.A., van, K.Y., Burgers, P.C., Luider, T.M., Endtz, H.P., Nieuwenhuis, E.E., & Jacobs, B.C. 
2010. TLR4-mediated sensing of Campylobacter jejuni by dendritic cells is determined by 
sialylation. J.Immunol., 185, (1) 748-755 available from: PM:20525894  

Kullberg, M.C., Jankovic, D., Gorelick, P.L., Caspar, P., Letterio, J.J., Cheever, A.W., & Sher, A. 
2002. Bacteria-triggered CD4(+) T regulatory cells suppress Helicobacter hepaticus-induced 
colitis. J.Exp.Med., 196, (4) 505-515 available from: PM:12186842  

Laffont, S., Siddiqui, K.R., & Powrie, F. 2010. Intestinal inflammation abrogates the 
tolerogenic properties of MLN CD103+ dendritic cells. Eur.J.Immunol., 40, (7) 1877-1883 
available from: PM:20432234  

Lara-Tejero, M. & Galan, J.E. 2000. A bacterial toxin that controls cell cycle progression as a 
deoxyribonuclease I-like protein. Science, 290, (5490) 354-357 available from: 
PM:11030657  

Lee, H., Hsu, F.F., Turk, J., & Groisman, E.A. 2004. The PmrA-regulated pmrC gene mediates 
phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella 
enterica. J.Bacteriol., 186, (13) 4124-4133 available from: PM:15205413  

Lee, J.C., Laydon, J.T., McDonnell, P.C., Gallagher, T.F., Kumar, S., Green, D., McNulty, D., 
Blumenthal, M.J., Heys, J.R., Landvatter, S.W., & . 1994. A protein kinase involved in the 
regulation of inflammatory cytokine biosynthesis. Nature, 372, (6508) 739-746 available 
from: PM:7997261  

Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M., & Hoffmann, J.A. 1996. The 
dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal 
response in Drosophila adults. Cell, 86, (6) 973-983 available from: PM:8808632  

Lewis, A.L., Desa, N., Hansen, E.E., Knirel, Y.A., Gordon, J.I., Gagneux, P., Nizet, V., & Varki, 
A. 2009. Innovations in host and microbial sialic acid biosynthesis revealed by 
phylogenomic prediction of nonulosonic acid structure. Proc.Natl.Acad.Sci.U.S.A, 106, (32) 
13552-13557 available from: PM:19666579  

Li, N., Zhang, W., Wan, T., Zhang, J., Chen, T., Yu, Y., Wang, J., & Cao, X. 2001. Cloning and 
characterization of Siglec-10, a novel sialic acid binding member of the Ig superfamily, from 
human dendritic cells. J.Biol.Chem., 276, (30) 28106-28112 available from: PM:11358961  

Lien, E., Means, T.K., Heine, H., Yoshimura, A., Kusumoto, S., Fukase, K., Fenton, M.J., 
Oikawa, M., Qureshi, N., Monks, B., Finberg, R.W., Ingalls, R.R., & Golenbock, D.T. 2000. 
Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. 
J.Clin.Invest, 105, (4) 497-504 available from: PM:10683379  

Linton, D., Karlyshev, A.V., Hitchen, P.G., Morris, H.R., Dell, A., Gregson, N.A., & Wren, B.W. 
2000. Multiple N-acetyl neuraminic acid synthetase (neuB) genes in Campylobacter jejuni: 
identification and characterization of the gene involved in sialylation of lipo-
oligosaccharide. Mol.Microbiol., 35, (5) 1120-1134 available from: PM:10712693  

Lior, H., Woodward, D.L., Edgar, J.A., Laroche, L.J., & Gill, P. 1982. Serotyping of 
Campylobacter jejuni by slide agglutination based on heat-labile antigenic factors. 
J.Clin.Microbiol., 15, (5) 761-768 available from: PM:7096555  



219 
 

Lippert, E., Karrasch, T., Sun, X., Allard, B., Herfarth, H.H., Threadgill, D., & Jobin, C. 2009. 
Gnotobiotic IL-10; NF-kappaB mice develop rapid and severe colitis following 
Campylobacter jejuni infection. PLoS.One., 4, (10) e7413 available from: PM:19841748  

Liu, M., John, C.M., & Jarvis, G.A. 2010. Phosphoryl moieties of lipid A from Neisseria 
meningitidis and N. gonorrhoeae lipooligosaccharides play an important role in activation 
of both MyD88- and TRIF-dependent TLR4-MD-2 signaling pathways. J.Immunol., 185, (11) 
6974-6984 available from: PM:21037101  

Liu, W., Ouyang, X., Yang, J., Liu, J., Li, Q., Gu, Y., Fukata, M., Lin, T., He, J.C., Abreu, M., 
Unkeless, J.C., Mayer, L., & Xiong, H. 2009. AP-1 activated by toll-like receptors regulates 
expression of IL-23 p19. J.Biol.Chem., 284, (36) 24006-24016 available from: PM:19592489  

Lock, K., Zhang, J., Lu, J., Lee, S.H., & Crocker, P.R. 2004. Expression of CD33-related siglecs 
on human mononuclear phagocytes, monocyte-derived dendritic cells and plasmacytoid 
dendritic cells. Immunobiology, 209, (1-2) 199-207 available from: PM:15481154  

Lohmann, K.L., Vandenplas, M., Barton, M.H., & Moore, J.N. 2003. Lipopolysaccharide from 
Rhodobacter sphaeroides is an agonist in equine cells. J.Endotoxin.Res., 9, (1) 33-37 
available from: PM:12691616  

Lorenz, E., Hallman, M., Marttila, R., Haataja, R., & Schwartz, D.A. 2002a. Association 
between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in 
the Finnish population. Pediatr.Res., 52, (3) 373-376 available from: PM:12193670  

Lorenz, E., Mira, J.P., Frees, K.L., & Schwartz, D.A. 2002b. Relevance of mutations in the 
TLR4 receptor in patients with gram-negative septic shock. Arch.Intern.Med., 162, (9) 1028-
1032 available from: PM:11996613  

Louwen, R., Heikema, A., van, B.A., Ott, A., Gilbert, M., Ang, W., Endtz, H.P., Bergman, M.P., 
& Nieuwenhuis, E.E. 2008. The sialylated lipooligosaccharide outer core in Campylobacter 
jejuni is an important determinant for epithelial cell invasion. Infect.Immun., 76, (10) 4431-
4438 available from: PM:18644887  

Ma, W., Lim, W., Gee, K., Aucoin, S., Nandan, D., Kozlowski, M., Diaz-Mitoma, F., & Kumar, 
A. 2001. The p38 mitogen-activated kinase pathway regulates the human interleukin-10 
promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated 
human macrophages. J.Biol.Chem., 276, (17) 13664-13674 available from: PM:11278848  

MacCallum, A.J., Harris, D., Haddock, G., & Everest, P.H. 2006. Campylobacter jejuni-
infected human epithelial cell lines vary in their ability to secrete interleukin-8 compared to 
in vitro-infected primary human intestinal tissue. Microbiology, 152, (Pt 12) 3661-3665 
available from: PM:17159219  

Macuch, P.J. & Tanner, A.C. 2000. Campylobacter species in health, gingivitis, and 
periodontitis. J.Dent.Res., 79, (2) 785-792 available from: PM:10728981  

Man, S.M. 2011. The clinical importance of emerging Campylobacter species. 
Nat.Rev.Gastroenterol.Hepatol., 8, (12) 669-685 available from: PM:22025030  

Manfredi, R., Calza, L., & Chiodo, F. 2002. Enteric and disseminated Campylobacter species 
infection during HIV disease: a persisting but significantly modified association in the 
HAART era. Am.J.Gastroenterol., 97, (2) 510-511 available from: PM:11866314  



220 
 

Manicassamy, S., Ravindran, R., Deng, J., Oluoch, H., Denning, T.L., Kasturi, S.P., Rosenthal, 
K.M., Evavold, B.D., & Pulendran, B. 2009. Toll-like receptor 2-dependent induction of 
vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and 
inhibits autoimmunity. Nat.Med., 15, (4) 401-409 available from: PM:19252500  

Manser, P.A. & Dalziel, R.W. 1985. A survey of Campylobacter in animals. J.Hyg.(Lond), 95, 
(1) 15-21 available from: PM:4020108  

Mansfield, L.S., Bell, J.A., Wilson, D.L., Murphy, A.J., Elsheikha, H.M., Rathinam, V.A., Fierro, 
B.R., Linz, J.E., & Young, V.B. 2007. C57BL/6 and congenic interleukin-10-deficient mice can 
serve as models of Campylobacter jejuni colonization and enteritis. Infect.Immun., 75, (3) 
1099-1115 available from: PM:17130251  

Mansfield, L.S., Gauthier, D.T., Abner, S.R., Jones, K.M., Wilder, S.R., & Urban, J.F. 2003. 
Enhancement of disease and pathology by synergy of Trichuris suis and Campylobacter 
jejuni in the colon of immunologically naive swine. Am.J.Trop.Med.Hyg., 68, (3) 70-80 
available from: PM:12685626  

Mariathasan, S., Weiss, D.S., Newton, K., McBride, J., O'Rourke, K., Roose-Girma, M., Lee, 
W.P., Weinrauch, Y., Monack, D.M., & Dixit, V.M. 2006. Cryopyrin activates the 
inflammasome in response to toxins and ATP. Nature, 440, (7081) 228-232 available from: 
PM:16407890  

Martinon, F., Burns, K., & Tschopp, J. 2002. The inflammasome: a molecular platform 
triggering activation of inflammatory caspases and processing of proIL-beta. Mol.Cell, 10, 
(2) 417-426 available from: PM:12191486  

Master, S.S., Rampini, S.K., Davis, A.S., Keller, C., Ehlers, S., Springer, B., Timmins, G.S., 
Sander, P., & Deretic, V. 2008. Mycobacterium tuberculosis prevents inflammasome 
activation. Cell Host.Microbe, 3, (4) 224-232 available from: PM:18407066  

Mata-Haro, V., Cekic, C., Martin, M., Chilton, P.M., Casella, C.R., & Mitchell, T.C. 2007. The 
vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science, 316, 
(5831) 1628-1632 available from: PM:17569868  

Matzinger, P. 2001. Introduction to the series. Danger model of immunity. 
Scand.J.Immunol., 54, (1-2) 2-3 available from: PM:11439141  

May, A.P., Robinson, R.C., Vinson, M., Crocker, P.R., & Jones, E.Y. 1998. Crystal structure of 
the N-terminal domain of sialoadhesin in complex with 3' sialyllactose at 1.85 A resolution. 
Mol.Cell, 1, (5) 719-728 available from: PM:9660955  

Mazmanian, S.K., Round, J.L., & Kasper, D.L. 2008. A microbial symbiosis factor prevents 
intestinal inflammatory disease. Nature, 453, (7195) 620-625 available from: PM:18509436  

Meade, K.G., Narciandi, F., Cahalane, S., Reiman, C., Allan, B., & O'Farrelly, C. 2009. 
Comparative in vivo infection models yield insights on early host immune response to 
Campylobacter in chickens. Immunogenetics, 61, (2) 101-110 available from: PM:19082824  

Medzhitov, R., Preston-Hurlburt, P., & Janeway, C.A., Jr. 1997. A human homologue of the 
Drosophila Toll protein signals activation of adaptive immunity. Nature, 388, (6640) 394-
397 available from: PM:9237759  



221 
 

Mellett, M., Atzei, P., Jackson, R., O'Neill, L.A., & Moynagh, P.N. 2011. Mal mediates TLR-
induced activation of CREB and expression of IL-10. J.Immunol., 186, (8) 4925-4935 
available from: PM:21398611  

Miao, E.A., Leaf, I.A., Treuting, P.M., Mao, D.P., Dors, M., Sarkar, A., Warren, S.E., Wewers, 
M.D., & Aderem, A. 2010a. Caspase-1-induced pyroptosis is an innate immune effector 
mechanism against intracellular bacteria. Nat.Immunol., 11, (12) 1136-1142 available from: 
PM:21057511  

Miao, E.A., Mao, D.P., Yudkovsky, N., Bonneau, R., Lorang, C.G., Warren, S.E., Leaf, I.A., & 
Aderem, A. 2010b. Innate immune detection of the type III secretion apparatus through the 
NLRC4 inflammasome. Proc.Natl.Acad.Sci.U.S.A, 107, (7) 3076-3080 available from: 
PM:20133635  

Miller, S.I., Ernst, R.K., & Bader, M.W. 2005. LPS, TLR4 and infectious disease diversity. 
Nat.Rev.Microbiol., 3, (1) 36-46 available from: PM:15608698  

Mishu, B. & Blaser, M.J. 1993. Role of infection due to Campylobacter jejuni in the initiation 
of Guillain-Barre syndrome. Clin.Infect.Dis., 17, (1) 104-108 available from: PM:8353228  

Montminy, S.W., Khan, N., McGrath, S., Walkowicz, M.J., Sharp, F., Conlon, J.E., Fukase, K., 
Kusumoto, S., Sweet, C., Miyake, K., Akira, S., Cotter, R.J., Goguen, J.D., & Lien, E. 2006. 
Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. 
Nat.Immunol., 7, (10) 1066-1073 available from: PM:16980981  

Moran, A.P., Zahringer, U., Seydel, U., Scholz, D., Stutz, P., & Rietschel, E.T. 1991. Structural 
analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) 
lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-
deoxy-D-glucose and 2,3-diamino-2,3-dideoxy-D-glucose. Eur.J.Biochem., 198, (2) 459-469 
available from: PM:2040305  

Mortensen, N.P., Kuijf, M.L., Ang, C.W., Schiellerup, P., Krogfelt, K.A., Jacobs, B.C., van, B.A., 
Endtz, H.P., & Bergman, M.P. 2009. Sialylation of Campylobacter jejuni lipo-
oligosaccharides is associated with severe gastro-enteritis and reactive arthritis. 
Microbes.Infect., 11, (12) 988-994 available from: PM:19631279  

Mortensen, N.P., Schiellerup, P., Boisen, N., Klein, B.M., Locht, H., Abuoun, M., Newell, D., 
& Krogfelt, K.A. 2011. The role of Campylobacter jejuni cytolethal distending toxin in 
gastroenteritis: toxin detection, antibody production, and clinical outcome. APMIS, 119, (9) 
626-634 available from: PM:21851421  

Myhr, K.M., Vagnes, K.S., Maroy, T.H., Aarseth, J.H., Nyland, H.I., & Vedeler, C.A. 2003. 
Interleukin-10 promoter polymorphisms in patients with Guillain-Barre syndrome. 
J.Neuroimmunol., 139, (1-2) 81-83 available from: PM:12799024  

Nachamkin, I., Ung, H., Moran, A.P., Yoo, D., Prendergast, M.M., Nicholson, M.A., Sheikh, 
K., Ho, T., Asbury, A.K., McKhann, G.M., & Griffin, J.W. 1999. Ganglioside GM1 mimicry in 
Campylobacter strains from sporadic infections in the United States. J.Infect.Dis., 179, (5) 
1183-1189 available from: PM:10191221  

Nachamkin, I., Yang, X.H., & Stern, N.J. 1993. Role of Campylobacter jejuni flagella as 
colonization factors for three-day-old chicks: analysis with flagellar mutants. 
Appl.Environ.Microbiol., 59, (5) 1269-1273 available from: PM:8517729  



222 
 

Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., Kosugi, A., 
Kimoto, M., & Miyake, K. 2002. Essential role of MD-2 in LPS responsiveness and TLR4 
distribution. Nat.Immunol., 3, (7) 667-672 available from: PM:12055629  

Nagamatsu, K., Kuwae, A., Konaka, T., Nagai, S., Yoshida, S., Eguchi, M., Watanabe, M., 
Mimuro, H., Koyasu, S., & Abe, A. 2009. Bordetella evades the host immune system by 
inducing IL-10 through a type III effector, BopN. J.Exp.Med., 206, (13) 3073-3088 available 
from: PM:20008527  

Naito, M., Frirdich, E., Fields, J.A., Pryjma, M., Li, J., Cameron, A., Gilbert, M., Thompson, 
S.A., & Gaynor, E.C. 2010. Effects of sequential Campylobacter jejuni 81-176 
lipooligosaccharide core truncations on biofilm formation, stress survival, and 
pathogenesis. J.Bacteriol., 192, (8) 2182-2192 available from: PM:20139192  

Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., & Trono, D. 
1996. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral 
vector. Science, 272, (5259) 263-267 available from: PM:8602510  

Netea, M.G., Nold-Petry, C.A., Nold, M.F., Joosten, L.A., Opitz, B., van der Meer, J.H., van de 
Veerdonk, F.L., Ferwerda, G., Heinhuis, B., Devesa, I., Funk, C.J., Mason, R.J., Kullberg, B.J., 
Rubartelli, A., van der Meer, J.W., & Dinarello, C.A. 2009. Differential requirement for the 
activation of the inflammasome for processing and release of IL-1beta in monocytes and 
macrophages. Blood, 113, (10) 2324-2335 available from: PM:19104081  

Netea, M.G., Sutmuller, R., Hermann, C., Van der Graaf, C.A., van der Meer, J.W., van 
Krieken, J.H., Hartung, T., Adema, G., & Kullberg, B.J. 2004. Toll-like receptor 2 suppresses 
immunity against Candida albicans through induction of IL-10 and regulatory T cells. 
J.Immunol., 172, (6) 3712-3718 available from: PM:15004175  

Ngampasutadol, J., Ram, S., Gulati, S., Agarwal, S., Li, C., Visintin, A., Monks, B., Madico, G., 
& Rice, P.A. 2008. Human factor H interacts selectively with Neisseria gonorrhoeae and 
results in species-specific complement evasion. J.Immunol., 180, (5) 3426-3435 available 
from: PM:18292569  

Nielsen, H., Steffensen, R., & Ejlertsen, T. 2012. Risk and prognosis of campylobacteriosis in 
relation to polymorphisms of host inflammatory cytokine genes. Scand.J.Immunol. available 
from: PM:22229864  

Niess, J.H. & Adler, G. 2010. Enteric flora expands gut lamina propria CX3CR1+ dendritic 
cells supporting inflammatory immune responses under normal and inflammatory 
conditions. J.Immunol., 184, (4) 2026-2037 available from: PM:20089703  

Niess, J.H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B.A., Vyas, J.M., Boes, M., 
Ploegh, H.L., Fox, J.G., Littman, D.R., & Reinecker, H.C. 2005. CX3CR1-mediated dendritic 
cell access to the intestinal lumen and bacterial clearance. Science, 307, (5707) 254-258 
available from: PM:15653504  

Nyati, K.K., Prasad, K.N., Verma, A., Singh, A.K., Rizwan, A., Sinha, S., Paliwal, V.K., & 
Pradhan, S. 2010. Association of TLR4 Asp299Gly and Thr399Ile polymorphisms with 
Guillain-Barre syndrome in Northern Indian population. J.Neuroimmunol., 218, (1-2) 116-
119 available from: PM:19913922  



223 
 

Oldfield, N.J., Moran, A.P., Millar, L.A., Prendergast, M.M., & Ketley, J.M. 2002. 
Characterization of the Campylobacter jejuni heptosyltransferase II gene, waaF, provides 
genetic evidence that extracellular polysaccharide is lipid A core independent. J.Bacteriol., 
184, (8) 2100-2107 available from: PM:11914340  

Osorio, F. & Reis e Sousa 2011. Myeloid C-type lectin receptors in pathogen recognition and 
host defense. Immunity., 34, (5) 651-664 available from: PM:21616435  

Panthel, K., Faller, G., & Haas, R. 2003. Colonization of C57BL/6J and BALB/c wild-type and 
knockout mice with Helicobacter pylori: effect of vaccination and implications for innate 
and acquired immunity. Infect.Immun., 71, (2) 794-800 available from: PM:12540559  

Park, B.S., Song, D.H., Kim, H.M., Choi, B.S., Lee, H., & Lee, J.O. 2009. The structural basis of 
lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature, 458, (7242) 1191-1195 
available from: PM:19252480  

Parker, C.T., Gilbert, M., Yuki, N., Endtz, H.P., & Mandrell, R.E. 2008. Characterization of 
lipooligosaccharide-biosynthetic loci of Campylobacter jejuni reveals new 
lipooligosaccharide classes: evidence of mosaic organizations. J.Bacteriol., 190, (16) 5681-
5689 available from: PM:18556784  

Parker, C.T., Horn, S.T., Gilbert, M., Miller, W.G., Woodward, D.L., & Mandrell, R.E. 2005. 
Comparison of Campylobacter jejuni lipooligosaccharide biosynthesis loci from a variety of 
sources. J.Clin.Microbiol., 43, (6) 2771-2781 available from: PM:15956396  

Parker, C.T., Miller, W.G., Horn, S.T., & Lastovica, A.J. 2007. Common genomic features of 
Campylobacter jejuni subsp. doylei strains distinguish them from C. jejuni subsp. jejuni. 
BMC.Microbiol., 7, 50 available from: PM:17535437  

Parkhill, J., Wren, B.W., Mungall, K., Ketley, J.M., Churcher, C., Basham, D., Chillingworth, 
T., Davies, R.M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A.V., Moule, S., Pallen, M.J., 
Penn, C.W., Quail, M.A., Rajandream, M.A., Rutherford, K.M., van Vliet, A.H., Whitehead, S., 
& Barrell, B.G. 2000. The genome sequence of the food-borne pathogen Campylobacter 
jejuni reveals hypervariable sequences. Nature, 403, (6770) 665-668 available from: 
PM:10688204  

Parsa, K.V., Butchar, J.P., Rajaram, M.V., Cremer, T.J., & Tridandapani, S. 2008. The tyrosine 
kinase Syk promotes phagocytosis of Francisella through the activation of Erk. 
Mol.Immunol., 45, (10) 3012-3021 available from: PM:18295889  

Pazzaglia, G., Bourgeois, A.L., el, D.K., Nour, N., Badran, N., & Hablas, R. 1991. 
Campylobacter diarrhoea and an association of recent disease with asymptomatic shedding 
in Egyptian children. Epidemiol.Infect., 106, (1) 77-82 available from: PM:1993455  

Phongsisay, V., Perera, V.N., & Fry, B.N. 2007. Expression of the htrB gene is essential for 
responsiveness of Salmonella typhimurium and Campylobacter jejuni to harsh 
environments. Microbiology, 153, (Pt 1) 254-262 available from: PM:17185554  

Poltorak, A., He, X., Smirnova, I., Liu, M.Y., Van, H.C., Du, X., Birdwell, D., Alejos, E., Silva, 
M., Galanos, C., Freudenberg, M., Ricciardi-Castagnoli, P., Layton, B., & Beutler, B. 1998. 
Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 
282, (5396) 2085-2088 available from: PM:9851930  



224 
 

Pridmore, A.C., Jarvis, G.A., John, C.M., Jack, D.L., Dower, S.K., & Read, R.C. 2003. Activation 
of toll-like receptor 2 (TLR2) and TLR4/MD2 by Neisseria is independent of capsule and 
lipooligosaccharide (LOS) sialylation but varies widely among LOS from different strains. 
Infect.Immun., 71, (7) 3901-3908 available from: PM:12819075  

Ram, S., Sharma, A.K., Simpson, S.D., Gulati, S., McQuillen, D.P., Pangburn, M.K., & Rice, 
P.A. 1998. A novel sialic acid binding site on factor H mediates serum resistance of 
sialylated Neisseria gonorrhoeae. J.Exp.Med., 187, (5) 743-752 available from: PM:9480984  

Rathinam, V.A., Appledorn, D.M., Hoag, K.A., Amalfitano, A., & Mansfield, L.S. 2009. 
Campylobacter jejuni-induced activation of dendritic cells involves cooperative signaling 
through Toll-like receptor 4 (TLR4)-MyD88 and TLR4-TRIF axes. Infect.Immun., 77, (6) 2499-
2507 available from: PM:19332531  

Rathinam, V.A., Hoag, K.A., & Mansfield, L.S. 2008. Dendritic cells from C57BL/6 mice 
undergo activation and induce Th1-effector cell responses against Campylobacter jejuni. 
Microbes.Infect., 10, (12-13) 1316-1324 available from: PM:18725315  

Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., 
Kraehenbuhl, J.P., & Ricciardi-Castagnoli, P. 2001. Dendritic cells express tight junction 
proteins and penetrate gut epithelial monolayers to sample bacteria. Nat.Immunol., 2, (4) 
361-367 available from: PM:11276208  

Revez, J. & Hanninen, M.L. 2012. Lipooligosaccharide locus classes are associated with 
certain Campylobacter jejuni multilocus sequence types. Eur.J.Clin.Microbiol.Infect.Dis. 
available from: PM:22298242  

Rose, A., Kay, E., Wren, B.W., & Dallman, M.J. 2011. The Campylobacter jejuni NCTC11168 
capsule prevents excessive cytokine production by dendritic cells. Med.Microbiol.Immunol. 
available from: PM:21863342  

Rotimi, V.O., Egwari, L., & Akande, B. 1990. Acidity and intestinal bacteria: an in-vitro 
assessment of the bactericidal activity of hydrochloric acid on intestinal pathogens. 
Afr.J.Med.Med.Sci., 19, (4) 275-280 available from: PM:2127996  

Round, J.L., Lee, S.M., Li, J., Tran, G., Jabri, B., Chatila, T.A., & Mazmanian, S.K. 2011. The 
Toll-like receptor 2 pathway establishes colonization by a commensal of the human 
microbiota. Science, 332, (6032) 974-977 available from: PM:21512004  

Ruiz-Palacios, G.M., Calva, J.J., Pickering, L.K., Lopez-Vidal, Y., Volkow, P., Pezzarossi, H., & 
West, M.S. 1990. Protection of breast-fed infants against Campylobacter diarrhea by 
antibodies in human milk. J.Pediatr., 116, (5) 707-713 available from: PM:2329419  

Ruiz-Palacios, G.M., Escamilla, E., & Torres, N. 1981. Experimental Campylobacter diarrhea 
in chickens. Infect.Immun., 34, (1) 250-255 available from: PM:7298187  

Russell, R.G., O'Donnoghue, M., Blake, D.C., Jr., Zulty, J., & DeTolla, L.J. 1993. Early colonic 
damage and invasion of Campylobacter jejuni in experimentally challenged infant Macaca 
mulatta. J.Infect.Dis., 168, (1) 210-215 available from: PM:8515112  

Sahin, O., Luo, N., Huang, S., & Zhang, Q. 2003. Effect of Campylobacter-specific maternal 
antibodies on Campylobacter jejuni colonization in young chickens. Appl.Environ.Microbiol., 
69, (9) 5372-5379 available from: PM:12957925  



225 
 

Saraiva, M. & O'Garra, A. 2010. The regulation of IL-10 production by immune cells. 
Nat.Rev.Immunol., 10, (3) 170-181 available from: PM:20154735  

Sato, S., Sanjo, H., Takeda, K., Ninomiya-Tsuji, J., Yamamoto, M., Kawai, T., Matsumoto, K., 
Takeuchi, O., & Akira, S. 2005. Essential function for the kinase TAK1 in innate and adaptive 
immune responses. Nat.Immunol., 6, (11) 1087-1095 available from: PM:16186825  

Savina, A., Jancic, C., Hugues, S., Guermonprez, P., Vargas, P., Moura, I.C., Lennon-Dumenil, 
A.M., Seabra, M.C., Raposo, G., & Amigorena, S. 2006. NOX2 controls phagosomal pH to 
regulate antigen processing during crosspresentation by dendritic cells. Cell, 126, (1) 205-
218 available from: PM:16839887  

Schirm, M., Soo, E.C., Aubry, A.J., Austin, J., Thibault, P., & Logan, S.M. 2003. Structural, 
genetic and functional characterization of the flagellin glycosylation process in Helicobacter 
pylori. Mol.Microbiol., 48, (6) 1579-1592 available from: PM:12791140  

Schulz, O., Jaensson, E., Persson, E.K., Liu, X., Worbs, T., Agace, W.W., & Pabst, O. 2009. 
Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve 
classical dendritic cell functions. J.Exp.Med., 206, (13) 3101-3114 available from: 
PM:20008524  

Sebald, M. & Veron. Teneur en bases de 1'ADN et classification des vibrions. 
Ann.Inst.Pasteur [105], 897-910. 1963.  
Ref Type: Generic 

Shaughnessy, R.G., Meade, K.G., Cahalane, S., Allan, B., Reiman, C., Callanan, J.J., & 
O'Farrelly, C. 2009. Innate immune gene expression differentiates the early avian intestinal 
response between Salmonella and Campylobacter. Vet.Immunol.Immunopathol., 132, (2-4) 
191-198 available from: PM:19632728  

Shenker, B.J., Hoffmaster, R.H., McKay, T.L., & Demuth, D.R. 2000. Expression of the 
cytolethal distending toxin (Cdt) operon in Actinobacillus actinomycetemcomitans: 
evidence that the CdtB protein is responsible for G2 arrest of the cell cycle in human T cells. 
J.Immunol., 165, (5) 2612-2618 available from: PM:10946289  

Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., & Kimoto, M. 1999. 
MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. 
J.Exp.Med., 189, (11) 1777-1782 available from: PM:10359581  

Siegesmund, A.M., Konkel, M.E., Klena, J.D., & Mixter, P.F. 2004. Campylobacter jejuni 
infection of differentiated THP-1 macrophages results in interleukin 1 beta release and 
caspase-1-independent apoptosis. Microbiology, 150, (Pt 3) 561-569 available from: 
PM:14993305  

Sing, A., Rost, D., Tvardovskaia, N., Roggenkamp, A., Wiedemann, A., Kirschning, C.J., 
Aepfelbacher, M., & Heesemann, J. 2002. Yersinia V-antigen exploits toll-like receptor 2 and 
CD14 for interleukin 10-mediated immunosuppression. J.Exp.Med., 196, (8) 1017-1024 
available from: PM:12391013  

Sjogren, E., Ruiz-Palacios, G., & Kaijser, B. 1989. Campylobacter jejuni isolations from 
Mexican and Swedish patients, with repeated symptomatic and/or asymptomatic diarrhoea 
episodes. Epidemiol.Infect., 102, (1) 47-57 available from: PM:2917617  



226 
 

Skirrow, M.B. 1977. Campylobacter enteritis: a "new" disease. Br.Med.J., 2, (6078) 9-11 
available from: PM:871765  

Smythies, L.E., Shen, R., Bimczok, D., Novak, L., Clements, R.H., Eckhoff, D.E., Bouchard, P., 
George, M.D., Hu, W.K., Dandekar, S., & Smith, P.D. 2010. Inflammation anergy in human 
intestinal macrophages is due to Smad-induced IkappaBalpha expression and NF-kappaB 
inactivation. J.Biol.Chem., 285, (25) 19593-19604 available from: PM:20388715  

Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, 
W.X., Zhu, L.H., Fauquet, C., & Ronald, P. 1995. A receptor kinase-like protein encoded by 
the rice disease resistance gene, Xa21. Science, 270, (5243) 1804-1806 available from: 
PM:8525370  

Song, Y.C., Jin, S., Louie, H., Ng, D., Lau, R., Zhang, Y., Weerasekera, R., Al, R.S., Ward, L.A., 
Der, S.D., & Chan, V.L. 2004. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) 
secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. 
Mol.Microbiol., 53, (2) 541-553 available from: PM:15228533  

Sonnenburg, J.L., Altheide, T.K., & Varki, A. 2004. A uniquely human consequence of 
domain-specific functional adaptation in a sialic acid-binding receptor. Glycobiology, 14, (4) 
339-346 available from: PM:14693915  

Soto, P.C., Stein, L.L., Hurtado-Ziola, N., Hedrick, S.M., & Varki, A. 2010. Relative over-
reactivity of human versus chimpanzee lymphocytes: implications for the human diseases 
associated with immune activation. J.Immunol., 184, (8) 4185-4195 available from: 
PM:20231688  

St Michael, F., Szymanski, C.M., Li, J., Chan, K.H., Khieu, N.H., Larocque, S., Wakarchuk, 
W.W., Brisson, J.R., & Monteiro, M.A. 2002. The structures of the lipooligosaccharide and 
capsule polysaccharide of Campylobacter jejuni genome sequenced strain NCTC 11168. 
Eur.J.Biochem., 269, (21) 5119-5136 available from: PM:12392544  

Stahl, M., Friis, L.M., Nothaft, H., Liu, X., Li, J., Szymanski, C.M., & Stintzi, A. 2011. L-fucose 
utilization provides Campylobacter jejuni with a competitive advantage. 
Proc.Natl.Acad.Sci.U.S.A, 108, (17) 7194-7199 available from: PM:21482772  

Sun, X., Threadgill, D., & Jobin, C. 2011. Campylobacter jejuni Induces Colitis Through 
Activation of Mammalian Target of Rapamycin Signaling. Gastroenterology available from: 
PM:21963787  

Sun, Y.H., Rolan, H.G., & Tsolis, R.M. 2007. Injection of flagellin into the host cell cytosol by 
Salmonella enterica serotype Typhimurium. J.Biol.Chem., 282, (47) 33897-33901 available 
from: PM:17911114  

Szymanski, C.M., Michael, F.S., Jarrell, H.C., Li, J., Gilbert, M., Larocque, S., Vinogradov, E., & 
Brisson, J.R. 2003. Detection of conserved N-linked glycans and phase-variable 
lipooligosaccharides and capsules from campylobacter cells by mass spectrometry and high 
resolution magic angle spinning NMR spectroscopy. J.Biol.Chem., 278, (27) 24509-24520 
available from: PM:12716884  

Takeda, K., Kaisho, T., & Akira, S. 2003. Toll-like receptors. Annu.Rev.Immunol., 21, 335-376 
available from: PM:12524386  



227 
 

Tam, C.C., Rodrigues, L.C., Viviani, L., Dodds, J.P., Evans, M.R., Hunter, P.R., Gray, J.J., Letley, 
L.H., Rait, G., Tompkins, D.S., & O'Brien, S.J. 2012. Longitudinal study of infectious intestinal 
disease in the UK (IID2 study): incidence in the community and presenting to general 
practice. Gut, 61, (1) 69-77 available from: PM:21708822  

Tatchou-Nyamsi-Konig, J.A., Moreau, A., Federighi, M., & Block, J.C. 2007. Behaviour of 
Campylobacter jejuni in experimentally contaminated bottled natural mineral water. 
J.Appl.Microbiol., 103, (2) 280-288 available from: PM:17650187  

Taylor, D.N., Echeverria, P., Pitarangsi, C., Seriwatana, J., Bodhidatta, L., & Blaser, M.J. 1988. 
Influence of strain characteristics and immunity on the epidemiology of Campylobacter 
infections in Thailand. J.Clin.Microbiol., 26, (5) 863-868 available from: PM:3384911  

Thibault, P., Logan, S.M., Kelly, J.F., Brisson, J.R., Ewing, C.P., Trust, T.J., & Guerry, P. 2001. 
Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter 
jejuni flagellin. J.Biol.Chem., 276, (37) 34862-34870 available from: PM:11461915  

Torok, H.P., Glas, J., Tonenchi, L., Mussack, T., & Folwaczny, C. 2004. Polymorphisms of the 
lipopolysaccharide-signaling complex in inflammatory bowel disease: association of a 
mutation in the Toll-like receptor 4 gene with ulcerative colitis. Clin.Immunol., 112, (1) 85-
91 available from: PM:15207785  

Tribble, D.R., Baqar, S., Scott, D.A., Oplinger, M.L., Trespalacios, F., Rollins, D., Walker, R.I., 
Clements, J.D., Walz, S., Gibbs, P., Burg, E.F., III, Moran, A.P., Applebee, L., & Bourgeois, A.L. 
2010. Assessment of the duration of protection in Campylobacter jejuni experimental 
infection in humans. Infect.Immun., 78, (4) 1750-1759 available from: PM:20086085  

Uchida, Y., Tsukada, Y., & Sugimori, T. 1979. Enzymatic properties of neuraminidases from 
Arthrobacter ureafaciens. J.Biochem., 86, (5) 1573-1585 available from: PM:42648  

Underwood, D.C., Osborn, R.R., Kotzer, C.J., Adams, J.L., Lee, J.C., Webb, E.F., Carpenter, 
D.C., Bochnowicz, S., Thomas, H.C., Hay, D.W., & Griswold, D.E. 2000. SB 239063, a potent 
p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil 
infiltration, and persistence. J.Pharmacol.Exp.Ther., 293, (1) 281-288 available from: 
PM:10734180  

Unkmeir, A., Kammerer, U., Stade, A., Hubner, C., Haller, S., Kolb-Maurer, A., Frosch, M., & 
Dietrich, G. 2002. Lipooligosaccharide and polysaccharide capsule: virulence factors of 
Neisseria meningitidis that determine meningococcal interaction with human dendritic 
cells. Infect.Immun., 70, (5) 2454-2462 available from: PM:11953382  

Uronen-Hansson, H., Allen, J., Osman, M., Squires, G., Klein, N., & Callard, R.E. 2004. Toll-
like receptor 2 (TLR2) and TLR4 are present inside human dendritic cells, associated with 
microtubules and the Golgi apparatus but are not detectable on the cell surface: integrity 
of microtubules is required for interleukin-12 production in response to internalized 
bacteria. Immunology, 111, (2) 173-178 available from: PM:15027902  

van den Bruele, T., Mourad-Baars, P.E., Claas, E.C., van der Plas, R.N., Kuijper, E.J., & 
Bredius, R.G. 2010. Campylobacter jejuni bacteremia and Helicobacter pylori in a patient 
with X-linked agammaglobulinemia. Eur.J.Clin.Microbiol.Infect.Dis., 29, (11) 1315-1319 
available from: PM:20556465  



228 
 

van Sorge, N.M., Bleumink, N.M., van Vliet, S.J., Saeland, E., van der Pol, W.L., van, K.Y., & 
van Putten, J.P. 2009. N-glycosylated proteins and distinct lipooligosaccharide glycoforms 
of Campylobacter jejuni target the human C-type lectin receptor MGL. Cell Microbiol., 11, 
(12) 1768-1781 available from: PM:19681908  

van Spreeuwel, J.P., Duursma, G.C., Meijer, C.J., Bax, R., Rosekrans, P.C., & Lindeman, J. 
1985. Campylobacter colitis: histological immunohistochemical and ultrastructural findings. 
Gut, 26, (9) 945-951 available from: PM:4029720  

van Vliet, S.J., Steeghs, L., Bruijns, S.C., Vaezirad, M.M., Snijders, B.C., Arenas Busto, J.A., 
Deken, M., van Putten, J.P., & van, K.Y. 2009. Variation of Neisseria gonorrhoeae 
lipooligosaccharide directs dendritic cell-induced T helper responses. PLoS.Pathog., 5, (10) 
e1000625 available from: PM:19834553  

Van, D.K., Pasmans, F., Ducatelle, R., Flahou, B., Vissenberg, K., Martel, A., Van den Broeck, 
W., Van, I.F., & Haesebrouck, F. 2008. Colonization strategy of Campylobacter jejuni results 
in persistent infection of the chicken gut. Vet.Microbiol., 130, (3-4) 285-297 available from: 
PM:18187272  

van Mourik, A., Steeghs, L., van, L.J., Meiring, H.D., Hamstra, H.J., van Putten, J.P., & 
Wosten, M.M. 2010. Altered linkage of hydroxyacyl chains in lipid A of Campylobacter 
jejuni reduces TLR4 activation and antimicrobial resistance. J.Biol.Chem., 285, (21) 15828-
15836 available from: PM:20351099  

Van Rhijn, I, Van den Berg, L.H., Ang, C.W., Admiraal, J., & Logtenberg, T. 2003. Expansion 
of human gammadelta T cells after in vitro stimulation with Campylobacter jejuni. 
Int.Immunol., 15, (3) 373-382 available from: PM:12618481  

Veron, M. & Chatelain R. Taxonomic Study of the Genus Campylobacter Sebald and Veron 
and Designation of the Neotype Strain for the Type Species, Campylobacter fetus . 
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY 23[2], 122-134. 1973.  
Ref Type: Generic 

Vijay-Kumar, M., Sanders, C.J., Taylor, R.T., Kumar, A., Aitken, J.D., Sitaraman, S.V., Neish, 
A.S., Uematsu, S., Akira, S., Williams, I.R., & Gewirtz, A.T. 2007. Deletion of TLR5 results in 
spontaneous colitis in mice. J.Clin.Invest, 117, (12) 3909-3921 available from: PM:18008007  

Vimr, E. & Lichtensteiger, C. 2002. To sialylate, or not to sialylate: that is the question. 
Trends Microbiol., 10, (6) 254-257 available from: PM:12088651  

Wacker, M., Linton, D., Hitchen, P.G., Nita-Lazar, M., Haslam, S.M., North, S.J., Panico, M., 
Morris, H.R., Dell, A., Wren, B.W., & Aebi, M. 2002. N-linked glycosylation in Campylobacter 
jejuni and its functional transfer into E. coli. Science, 298, (5599) 1790-1793 available from: 
PM:12459590  

Walker, R.I., Schmauder-Chock, E.A., Parker, J.L., & Burr, D. 1988. Selective association and 
transport of Campylobacter jejuni through M cells of rabbit Peyer's patches. 
Can.J.Microbiol., 34, (10) 1142-1147 available from: PM:3196964  

Walz, S.E., Baqar, S., Beecham, H.J., Echeverria, P., Lebron, C., McCarthy, M., Kuschner, R., 
Bowling, S., Bourgeois, A.L., & Scott, D.A. 2001. Pre-exposure anti-Campylobacter jejuni 
immunoglobulin a levels associated with reduced risk of Campylobacter diarrhea in adults 
traveling to Thailand. Am.J.Trop.Med.Hyg., 65, (5) 652-656 available from: PM:11716132  



229 
 

Wang, Y.H., Gorvel, J.P., Chu, Y.T., Wu, J.J., & Lei, H.Y. 2010. Helicobacter pylori impairs 
murine dendritic cell responses to infection. PLoS.One., 5, (5) e10844 available from: 
PM:20523725  

Wassenaar, T.M., Bleumink-Pluym, N.M., Newell, D.G., Nuijten, P.J., & van der Zeijst, B.A. 
1994. Differential flagellin expression in a flaA flaB+ mutant of Campylobacter jejuni. 
Infect.Immun., 62, (9) 3901-3906 available from: PM:8063406  

Watanabe, T., Kitani, A., Murray, P.J., & Strober, W. 2004. NOD2 is a negative regulator of 
Toll-like receptor 2-mediated T helper type 1 responses. Nat.Immunol., 5, (8) 800-808 
available from: PM:15220916  

Waterman, S.R. & Small, P.L. 1998. Acid-sensitive enteric pathogens are protected from 
killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain 
solid food sources. Appl.Environ.Microbiol., 64, (10) 3882-3886 available from: PM:9758814  

Watson, R.O. & Galan, J.E. 2005. Signal transduction in Campylobacter jejuni-induced 
cytokine production. Cell Microbiol., 7, (5) 655-665 available from: PM:15839895  

Watson, R.O. & Galan, J.E. 2008. Campylobacter jejuni survives within epithelial cells by 
avoiding delivery to lysosomes. PLoS.Pathog., 4, (1) e14 available from: PM:18225954  

Watson, R.O., Novik, V., Hofreuter, D., Lara-Tejero, M., & Galan, J.E. 2007. A MyD88-
deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. 
Infect.Immun., 75, (4) 1994-2003 available from: PM:17194808  

Weichhart, T., Costantino, G., Poglitsch, M., Rosner, M., Zeyda, M., Stuhlmeier, K.M., Kolbe, 
T., Stulnig, T.M., Horl, W.H., Hengstschlager, M., Muller, M., & Saemann, M.D. 2008. The 
TSC-mTOR signaling pathway regulates the innate inflammatory response. Immunity., 29, 
(4) 565-577 available from: PM:18848473  

West, M.A., Wallin, R.P., Matthews, S.P., Svensson, H.G., Zaru, R., Ljunggren, H.G., Prescott, 
A.R., & Watts, C. 2004. Enhanced dendritic cell antigen capture via toll-like receptor-
induced actin remodeling. Science, 305, (5687) 1153-1157 available from: PM:15326355  

Wine, E., Chan, V.L., & Sherman, P.M. 2008. Campylobacter jejuni mediated disruption of 
polarized epithelial monolayers is cell-type specific, time dependent, and correlates with 
bacterial invasion. Pediatr.Res., 64, (6) 599-604 available from: PM:18679160  

Wolf, A.J., Linas, B., Trevejo-Nunez, G.J., Kincaid, E., Tamura, T., Takatsu, K., & Ernst, J.D. 
2007. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs 
their function in vivo. J.Immunol., 179, (4) 2509-2519 available from: PM:17675513  

Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., & Mathison, J.C. 1990. CD14, a 
receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 249, 
(4975) 1431-1433 available from: PM:1698311  

Young, K.T., Davis, L.M., & DiRita, V.J. 2007. Campylobacter jejuni: molecular biology and 
pathogenesis. Nat.Rev.Microbiol., 5, (9) 665-679 available from: PM:17703225  

Young, N.M., Brisson, J.R., Kelly, J., Watson, D.C., Tessier, L., Lanthier, P.H., Jarrell, H.C., 
Cadotte, N., St Michael, F., Aberg, E., & Szymanski, C.M. 2002. Structure of the N-linked 



230 
 

glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter 
jejuni. J.Biol.Chem., 277, (45) 42530-42539 available from: PM:12186869  

Yuki, N. 1997. Molecular mimicry between gangliosides and lipopolysaccharides of 
Campylobacter jejuni isolated from patients with Guillain-Barre syndrome and Miller Fisher 
syndrome. J.Infect.Dis., 176 Suppl 2, S150-S153 available from: PM:9396700  

Zhang, S., Weinheimer, C., Courtois, M., Kovacs, A., Zhang, C.E., Cheng, A.M., Wang, Y., & 
Muslin, A.J. 2003. The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy 
and fibrosis. J.Clin.Invest, 111, (6) 833-841 available from: PM:12639989  

Zhao, Y., Yang, J., Shi, J., Gong, Y.N., Lu, Q., Xu, H., Liu, L., & Shao, F. 2011. The NLRC4 
inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature, 
477, (7366) 596-600 available from: PM:21918512  

Zhou, Y., Kawasaki, H., Hsu, S.C., Lee, R.T., Yao, X., Plunkett, B., Fu, J., Yang, K., Lee, Y.C., & 
Huang, S.K. 2010. Oral tolerance to food-induced systemic anaphylaxis mediated by the C-
type lectin SIGNR1. Nat.Med., 16, (10) 1128-1133 available from: PM:20835248  

Zilbauer, M., Dorrell, N., Boughan, P.K., Harris, A., Wren, B.W., Klein, N.J., & Bajaj-Elliott, M. 
2005. Intestinal innate immunity to Campylobacter jejuni results in induction of bactericidal 
human beta-defensins 2 and 3. Infect.Immun., 73, (11) 7281-7289 available from: 
PM:16239524  

Zilbauer, M., Dorrell, N., Elmi, A., Lindley, K.J., Schuller, S., Jones, H.E., Klein, N.J., Nunez, G., 
Wren, B.W., & Bajaj-Elliott, M. 2007. A major role for intestinal epithelial nucleotide 
oligomerization domain 1 (NOD1) in eliciting host bactericidal immune responses to 
Campylobacter jejuni. Cell Microbiol., 9, (10) 2404-2416 available from: PM:17521327  
 
 

 


