931 research outputs found

    Functional requirements document for NASA/MSFC Earth Science and Applications Division: Data and information system (ESAD-DIS). Interoperability, 1992

    Get PDF
    These Earth Science and Applications Division-Data and Information System (ESAD-DIS) interoperability requirements are designed to quantify the Earth Science and Application Division's hardware and software requirements in terms of communications between personal and visualization workstation, and mainframe computers. The electronic mail requirements and local area network (LAN) requirements are addressed. These interoperability requirements are top-level requirements framed around defining the existing ESAD-DIS interoperability and projecting known near-term requirements for both operational support and for management planning. Detailed requirements will be submitted on a case-by-case basis. This document is also intended as an overview of ESAD-DIs interoperability for new-comers and management not familiar with these activities. It is intended as background documentation to support requests for resources and support requirements

    The Cannabinoid-Like Compound, VSN16R, Acts on Large Conductance, Ca2+-Activated K+ Channels to Modulate Hippocampal CA1 Pyramidal Neuron Firing

    Get PDF
    Large conductance, Ca2+-activated K+ (BKCa) channels are widely expressed in the central nervous system, where they regulate action potential duration, firing frequency and consequential neurotransmitter release. Moreover, drug action on, mutations to, or changes in expression levels of BKCa can modulate neuronal hyperexcitability. Amongst other potential mechanisms of action, cannabinoid compounds have recently been reported to activate BKCa channels. Here, we examined the effects of the cannabinoid-like compound (R,Z)-3-(6-(dimethylamino)-6-oxohex-1-en-1-yl)-N-(1-hydroxypropan-2-yl) benzamide (VSN16R) at CA1 pyramidal neurons in hippocampal ex vivo brain slices using current clamp electrophysiology. We also investigated effects of the BKCa channel blockers iberiotoxin (IBTX) and the novel 7-pra-martentoxin (7-Pra-MarTx) on VSN16R action. VSN16R (100 μM) increased first and second fast after-hyperpolarization (fAHP) amplitude, decreased first and second inter spike interval (ISI) and shortened first action potential (AP) width under high frequency stimulation protocols in mouse hippocampal pyramidal neurons. IBTX (100 nM) decreased first fAHP amplitude, increased second ISI and broadened first and second AP width under high frequency stimulation protocols; IBTX also broadened first and second AP width under low frequency stimulation protocols. IBTX blocked effects of VSN16R on fAHP amplitude and ISI. 7-Pra-MarTx (100 nM) had no significant effects on fAHP amplitude and ISI but, unlike IBTX, shortened first and second AP width under high frequency stimulation protocols; 7-Pra-MarTx also shortened second AP width under low frequency stimulation protocols. However, in the presence of 7-Pra-MarTx, VSN16R retained some effects on AP waveform under high frequency stimulation protocols; moreover, VSN16R effects were revealed under low frequency stimulation protocols. These findings demonstrate that VSN16R has effects in native hippocampal neurons consistent with its causing an increase in initial firing frequency via activation of IBTX-sensitive BKCa channels. The differential pharmacological effects described suggest that VSN16R may differentially target BKCa channel subtypes

    Protofibrillar amyloid beta modulation of recombinant hCaV2.2 (N-type) voltage-gated channels

    Get PDF
    Cav2.2 channels are key regulators of presynaptic Ca2+ influx and their dysfunction and/or aber-rant regulation has been implicated in many disease states; however, the nature of their involve-ment in Alzheimer’s disease (AD) is less clear. In this short communication, we show that recombinant hCav2.2/beta1b/a2d channels are modulated by human synthetic AD-related protofibrillar amyloid beta Abeta1-42 peptide. Structural studies revealed a time-dependent increase in protofibril length, with the majority of protofibrils less than 100nm at 24hr; while at 48 hr, the majority were longer than 100nm. Cav2.2 modulation by Abeta1-42 was different between a ‘low’ (100nM) and ‘high’ (1µM) concentration in terms of distinct effects on individual biophysical parameters. 100nM Abeta1-42 caused a significant change in the slope factor (k) consistent with improved voltage sensitivity of the channel; by contrast, 1µM Abeta1-42 caused an inhibitory decrease in current density (pA/pF) and maximum conductance (Gmax). These data highlight a differential modulation of Cav2.2 channels by Abeta1-42 peptide. Discrete changes in presynaptic Ca2+ flux have been reported to occur at an early stage of AD; therefore, this study has implications for targeting Cav2.2 in the AD pathology and reveals a potential mechanistic link between amyloid accumulation and Cav2.2 channel modulation

    Computer-Aided Detection of Breast Cancer – Have All Bases Been Covered?

    Get PDF
    The use of computer-aided detection (CAD) systems in mammography has been the subject of intense research for many years. These systems have been developed with the aim of helping radiologists to detect signs of breast cancer. However, the effectiveness of CAD systems in practice has sparked recent debate. In this commentary, we argue that computer-aided detection will become an increasingly important tool for radiologists in the early detection of breast cancer, but there are some important issues that need to be given greater focus in designing CAD systems if they are to reach their full potential
    corecore