31 research outputs found

    Dapagliflozin Versus Placebo on Left Ventricular Remodeling in Patients With Diabetes and Heart Failure:The REFORM Trial

    Get PDF
    OBJECTIVE To determine the effects of dapagliflozin in patients with heart failure (HF) and type 2 diabetes mellitus (T2DM) on left ventricular (LV) remodeling using cardiac MRI. RESEARCH DESIGN AND METHODS We randomized 56 patients with T2DM and HF with LV systolic dysfunction to dapagliflozin 10 mg daily or placebo for 1 year, on top of usual therapy. The primary end point was difference in LV end-systolic volume (LVESV) using cardiac MRI. Key secondary end points included other measures of LV remodeling and clinical and biochemical parameters. RESULTS In our cohort, dapagliflozin had no effect on LVESV or any other parameter of LV remodeling. However, it reduced diastolic blood pressure and loop diuretic requirements while increasing hemoglobin, hematocrit, and ketone bodies. There was a trend toward lower weight. CONCLUSIONS We were unable to determine with certainty whether dapagliflozin in patients with T2DM and HF had any effect on LV remodeling. Whether the benefits of dapagliflozin in HF are due to remodeling or other mechanisms remains unknown

    Systematic Identification of Spontaneous Preterm Birth-Associated RNA Transcripts in Maternal Plasma

    Get PDF
    <div><h3>Background</h3><p>Spontaneous preterm birth (SPB, before 37 gestational weeks) is a major cause of perinatal mortality and morbidity, but its pathogenesis remains unclear. Studies on SPB have been hampered by the limited availability of markers for SPB in predelivery clinical samples that can be easily compared with gestational age-matched normal controls. We hypothesize that SPB involves aberrant placental RNA expression, and that such RNA transcripts can be detected in predelivery maternal plasma samples, which can be compared with gestational age-matched controls.</p> <h3>Principal Findings</h3><p>Using gene expression microarray to profile essentially all human genes, we observed that 426 probe signals were changed by >2.9-fold in the SPB placentas, compared with the spontaneous term birth (STB) placentas. Among the genes represented by those probes, we observed an over-representation of functions in RNA stabilization, extracellular matrix binding, and acute inflammatory response. Using RT-quantitative PCR, we observed differences in the RNA concentrations of certain genes only between the SPB and STB placentas, but not between the STB and term elective cesarean delivery placentas. Notably, 36 RNA transcripts were observed at placental microarray signals higher than a threshold, which indicated the possibility of their detection in maternal plasma. Among them, the <em>IL1RL1</em> mRNA was tested in plasma samples taken from 37 women. It was detected in 6 of 10 (60%) plasma samples collected during the presentation of preterm labor (≤32.9 weeks) in women eventually giving SPB, but was detected in only 1 of 27 (4%) samples collected during matched gestational weeks from women with no preterm labor (Fisher exact test, p = 0.00056).</p> <h3>Conclusion</h3><p>We have identified 36 SPB-associated RNA transcripts, which are possibly detectable in maternal plasma. We have illustrated that the <em>IL1RL1</em> mRNA was more frequently detected in predelivery maternal plasma samples collected from women resulting in SPB than the gestational-age matched controls.</p> </div

    Systematic Identification of Placental Epigenetic Signatures for the Noninvasive Prenatal Detection of Edwards Syndrome

    Get PDF
    Background: Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta. By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and noninvasively detect fetal trisomy 21. Here we apply this epigenetic-genetic (EGG) chromosome dosage approach to detect Edwards syndrome (trisomy 18) in the fetus noninvasively. Principal Findings: We have systematically identified methylated fetal epigenetic markers on chromosome 18 by methylated DNA immunoprecipitation (MeDIP) and tiling array analysis with confirmation using quantitative DNA methylation assays. Methylated DNA sequences from an intergenic region between the VAPA and APCDD1 genes (the VAPAAPCDD1 DNA) were detected in pre-delivery, but not post-delivery, maternal plasma samples. The concentrations correlated positively with those of an established fetal genetic marker, ZFY, in pre-delivery maternal plasma. The ratios of methylated VAPA-APCDD1(chr18) to ZFY(chrY) were higher in maternal plasma samples of 9 male trisomy 18 fetuses than those of 27 male euploid fetuses (Mann-Whitney test, P = 0.029). We defined the cutoff value for detecting trisomy 18 fetuses as mean+1.96 SD of the EGG ratios of the euploid cases. Eight of 9 trisomy 18 and 1 of 27 euploid cases showed EGG ratios higher than the cutoff value, giving a sensitivity of 88.9% and a specificity of 96.3%. Conclusions: Our data have shown that the methylated VAPA-APCDD1 DNA in maternal plasma is redominantly derived from the fetus. We have demonstrated that this novel fetal epigenetic marker in maternal plasma is useful for the noninvasive detection of fetal trisomy 18. © Tsui et al.published_or_final_versio

    A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes:the MET-REMODEL trial

    Get PDF
    Aim We tested the hypothesis that metformin may regress left ventricular hypertrophy (LVH) in patients who have coronary artery disease (CAD), with insulin resistance (IR) and/or pre-diabetes. Methods and results We randomly assigned 68 patients (mean age 65 ± 8 years) without diabetes who have CAD with IR and/or pre-diabetes to receive either metformin XL (2000 mg daily dose) or placebo for 12 months. Primary endpoint was change in left ventricular mass indexed to height1.7 (LVMI), assessed by magnetic resonance imaging. In the modified intention-to-treat analysis (n = 63), metformin treatment significantly reduced LVMI compared with placebo group (absolute mean difference −1.37 (95% confidence interval: −2.63 to −0.12, P = 0.033). Metformin also significantly reduced other secondary study endpoints such as: LVM (P = 0.032), body weight (P = 0.001), subcutaneous adipose tissue (P = 0.024), office systolic blood pressure (BP, P = 0.022) and concentration of thiobarbituric acid reactive substances, a biomarker for oxidative stress (P = 0.04). The glycated haemoglobin A1C concentration and fasting IR index did not differ between study groups at the end of the study. Conclusion Metformin treatment significantly reduced LVMI, LVM, office systolic BP, body weight, and oxidative stress. Although LVH is a good surrogate marker of cardiovascular (CV) outcome, conclusive evidence for the cardio-protective role of metformin is required from large CV outcomes trials

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Research into the effect of sodium-glucose linked transporter 2 inhibition on left ventricular remodeling in patients with heart failure and diabetes mellitus

    No full text
    ween dapagliflozin and placebo in the primary endpoints of LV end diastolic volume (LVEDV) or LV end systolic volume (LVESV); +4.71mls; 95% CI: -17.to 26.50 and +1.52mls; 95% CI: -15.68 to 18.72 respectively. However, when an interaction term for starting LVEF was added to the model, dapagliflozin significantly lowered LVEDV, LVESV and LV mass in those with starting LVEF ≥ 45%; -15.59mls; p=0.019, -15.20mls; p=0.016 and -4.87gm/m2; p=0.026. Patients on dapagliflozin had weight reduction; -1.90kg; 95% CI: -3.83 to +0.04; p=0.054, lower diastolic BP; -6.34mmHg; 95% CI: -11.35 to -1.32; p=0.014 and higher hemoglobin; +1.23 g/dl; 95% CI: 0.65 to 1.82; p<0.001. They were also more likely to stop or reduce loop diuretics; 50.0% vs. 8.7%; p=0.005. Conclusions: Our data show dapagliflozin treatment resulted in weight and blood pressure reduction among patients with DM and HFrEF. There was evidence to suggest that dapagliflozin may cause LV reverse remodelling in DM patients with mild, but not with more severe HFrEF

    RNA transcripts that were up-regulated in the SPB placentas, relative to the STB placentas, according to the microarray experiment (Mann-Whitney test, adjusted by the Benjamini and Hochberg method, adjusted p<0.05).

    No full text
    a<p>The RNA transcript interrogated by each probeset is shown as the gene symbol and name approved by the HUGO Gene Nomenclature Committee at the European Bioinformatics Institute (<a href="http://www.genenames.org" target="_blank">http://www.genenames.org</a>). Certain probesets interrogating the same gene may be listed as different GenBank accession numbers. This may reflect the different isoforms being interrogated. Other details on the probesets are freely accessible at <a href="http://www.netaffx.com" target="_blank">http://www.netaffx.com</a>.</p>b<p>Only 15 transcripts with the greatest fold-change values are shown. The remaining 225 transcripts are shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0034328#pone.0034328.s006" target="_blank">Table S5</a>.</p>c<p>Up-regulated transcripts with higher expression levels than the <i>PLAC4</i> mRNA in the placenta, according to the microarray data.</p><p>SPB, spontaneous preterm birth; STB, spontaneous term birth.</p

    Allopurinol Benefits Left Ventricular Mass and Endothelial Dysfunction in Chronic Kidney Disease

    No full text
    Allopurinol ameliorates endothelial dysfunction and arterial stiffness among patients without chronic kidney disease (CKD), but it is unknown if it has similar effects among patients with CKD. Furthermore, because arterial stiffness increases left ventricular afterload, any allopurinol-induced improvement in arterial compliance might also regress left ventricular hypertrophy (LVH). We conducted a randomized, double-blind, placebo-controlled, parallel-group study in patients with stage 3 CKD and LVH. We randomly assigned 67 subjects to allopurinol at 300 mg/d or placebo for 9 months; 53 patients completed the study. We measured left ventricular mass index (LVMI) with cardiac magnetic resonance imaging (MRI), assessed endothelial function by flow-mediated dilation (FMD) of the brachial artery, and evaluated central arterial stiffness by pulse-wave analysis. Allopurinol significantly reduced LVH (P = 0.036), improved endothelial function (P = 0.009), and improved the central augmentation index (P = 0.015). This study demonstrates that allopurinol can regress left ventricular mass and improve endothelial function among patients with CKD. Because LVH and endothelial dysfunction associate with prognosis, these results call for further trials to examine whether allopurinol reduces cardiovascular events in patients with CKD and LVH
    corecore