150 research outputs found

    Encyclopedia of Infectious Diseases: Modern Methodologies

    Get PDF

    Local variations in spatial synchrony of influenza epidemics

    Get PDF
    Background: Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While the mechanism of dissemination across regions and states of the United States has been described, understanding the determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal influenza incidence data to evaluate disease structure is often not available. Methodology and Findings: We report on the underlying relationship between the spread of influenza and human movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state and decay with distance (regional correlation = 62%). Synchrony as a function of population size display evidence of hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model describing movement between two populations is a stronger predictor of influenza spread than adult movement to and from workplaces suggesting that non-routine and leisure travel drive local epidemics. Conclusions: These findings highlight the complex nature of influenza spread across multiple geographic scales. © 2012 Stark et al

    Improving Assessment of Drug Safety Through Proteomics: Early Detection and Mechanistic Characterization of the Unforeseen Harmful Effects of Torcetrapib.

    Get PDF
    BackgroundEarly detection of adverse effects of novel therapies and understanding of their mechanisms could improve the safety and efficiency of drug development. We have retrospectively applied large-scale proteomics to blood samples from ILLUMINATE (Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events), a trial of torcetrapib (a cholesterol ester transfer protein inhibitor), that involved 15 067 participants at high cardiovascular risk. ILLUMINATE was terminated at a median of 550 days because of significant absolute increases of 1.2% in cardiovascular events and 0.4% in mortality with torcetrapib. The aims of our analysis were to determine whether a proteomic analysis might reveal biological mechanisms responsible for these harmful effects and whether harmful effects of torcetrapib could have been detected early in the ILLUMINATE trial with proteomics.MethodsA nested case-control analysis of paired plasma samples at baseline and at 3 months was performed in 249 participants assigned to torcetrapib plus atorvastatin and 223 participants assigned to atorvastatin only. Within each treatment arm, cases with events were matched to controls 1:1. Main outcomes were a survey of 1129 proteins for discovery of biological pathways altered by torcetrapib and a 9-protein risk score validated to predict myocardial infarction, stroke, heart failure, or death.ResultsPlasma concentrations of 200 proteins changed significantly with torcetrapib. Their pathway analysis revealed unexpected and widespread changes in immune and inflammatory functions, as well as changes in endocrine systems, including in aldosterone function and glycemic control. At baseline, 9-protein risk scores were similar in the 2 treatment arms and higher in participants with subsequent events. At 3 months, the absolute 9-protein derived risk increased in the torcetrapib plus atorvastatin arm compared with the atorvastatin-only arm by 1.08% (P=0.0004). Thirty-seven proteins changed in the direction of increased risk of 49 proteins previously associated with cardiovascular and mortality risk.ConclusionsHeretofore unknown effects of torcetrapib were revealed in immune and inflammatory functions. A protein-based risk score predicted harm from torcetrapib within just 3 months. A protein-based risk assessment embedded within a large proteomic survey may prove to be useful in the evaluation of therapies to prevent harm to patients.Clinical trial registrationURL: https://www.clinicaltrials.gov. Unique identifier: NCT00134264

    Regulatory bioinformatics for food and drug safety

    Get PDF
    Abstract "Regulatory Bioinformatics" strives to develop and implement a standardized and transparent bioinformatic framework to support the implementation of existing and emerging technologies in regulatory decision-making. It has great potential to improve public health through the development and use of clinically important medical products and tools to manage the safety of the food supply. However, the application of regulatory bioinformatics also poses new challenges and requires new knowledge and skill sets. In the latest Global Coalition on Regulatory Science Research (GCRSR) governed conference, Global Summit on Regulatory Science (GSRS2015), regulatory bioinformatics principles were presented with respect to global trends, initiatives and case studies. The discussion revealed that datasets, analytical tools, skills and expertise are rapidly developing, in many cases via large international collaborative consortia. It also revealed that significant research is still required to realize the potential applications of regulatory bioinformatics. While there is significant excitement in the possibilities offered by precision medicine to enhance treatments of serious and/or complex diseases, there is a clear need for further development of mechanisms to securely store, curate and share data, integrate databases, and standardized quality control and data analysis procedures. A greater understanding of the biological significance of the data is also required to fully exploit vast datasets that are becoming available. The application of bioinformatics in the microbiological risk analysis paradigm is delivering clear benefits both for the investigation of food borne pathogens and for decision making on clinically important treatments. It is recognized that regulatory bioinformatics will have many beneficial applications by ensuring high quality data, validated tools and standardized processes, which will help inform the regulatory science community of the requirements necessary to ensure the safe introduction and effective use of these applications

    Unlocking biomarker discovery: Large scale application of aptamer proteomic technology for early detection of lung cancer

    Get PDF
    Lung cancer is the leading cause of cancer deaths, because ~84% of cases are diagnosed at an advanced stage. Worldwide in 2008, ~1.5 million people were diagnosed and ~1.3 million died – a survival rate unchanged since 1960. However, patients diagnosed at an early stage and have surgery experience an 86% overall 5-year survival. New diagnostics are therefore needed to identify lung cancer at this stage. Here we present the first large scale clinical use of aptamers to discover blood protein biomarkers in disease with our breakthrough proteomic technology. This multi-center case-control study was conducted in archived samples from 1,326 subjects from four independent studies of non-small cell lung cancer (NSCLC) in long-term tobacco-exposed populations. We measured >800 proteins in 15uL of serum, identified 44 candidate biomarkers, and developed a 12-protein panel that distinguished NSCLC from controls with 91% sensitivity and 84% specificity in a training set and 89% sensitivity and 83% specificity in a blinded, independent verification set. Performance was similar for early and late stage NSCLC. This is a significant advance in proteomics in an area of high clinical need

    Mechanisms of sodium-glucose cotransporter-2 inhibition: insights from large-scale proteomics

    Get PDF
    OBJECTIVE To assess the effects of empagliflozin, a selective sodium–glucose cotransporter 2 (SGLT2) inhibitor, on broad biological systems through proteomics. RESEARCH DESIGN AND METHODS Aptamer-based proteomics was used to quantify 3,713 proteins in 144 paired plasma samples obtained from 72 participants across the spectrum of glucose tolerance before and after 4 weeks of empagliflozin 25 mg/day. The biology of the plasma proteins significantly changed by empagliflozin (at false discovery rate–corrected P < 0.05) was discerned through Ingenuity Pathway Analysis. RESULTS Empagliflozin significantly affected levels of 43 proteins, 6 related to cardiomyocyte function (fatty acid–binding protein 3 and 4 [FABPA], neurotrophic receptor tyrosine kinase, renin, thrombospondin 4, and leptin receptor), 5 to iron handling (ferritin heavy chain 1, transferrin receptor protein 1, neogenin, growth differentiation factor 2 [GDF2], and β2-microglobulin), and 1 to sphingosine/ceramide metabolism (neutral ceramidase), a known pathway of cardiovascular disease. Among the protein changes achieving the strongest statistical significance, insulin-like binding factor protein-1 (IGFBP-1), transgelin-2, FABPA, GDF15, and sulphydryl oxidase 2 precursor were increased, while ferritin, thrombospondin 3, and Rearranged during Transfection (RET) were decreased by empagliflozin administration. CONCLUSIONS SGLT2 inhibition is associated, directly or indirectly, with multiple biological effects, including changes in markers of cardiomyocyte contraction/relaxation, iron handling, and other metabolic and renal targets. The most significant differences were detected in protein species (GDF15, ferritin, IGFBP-1, and FABP) potentially related to the clinical and metabolic changes that were actually measured in the same patients. These novel results may inform further studies using targeted proteomics and a prospective design
    corecore