569 research outputs found
Australian Undergraduate IT Curricula: Employer Perspectives
This research paper outlines our research approach relating to analysing current trends within Australian undergraduate BIT curricula. With a variety of data collection techniques, we seek to address a knowledge gap in the literature through identifying the strengths and challenges facing university curricula. Closing the education-employment gap requires the involvement of all stakeholder groups (academics, employers, and students) (Trauth et al, 1993). We develop an educational matrix based on the information literacy framework and the Australian Qualifications Framework (AQF). Secondary data collection is conducted from a range of NSW BIT core units to map against this framework, as well as conducting pilot interviews with selected employers to gain a better understanding of the current curriculum and the needs of the employers. The outcome of this research will enable current educational sectors to improve the tertiary education curriculum, with a view towards increasing employability rates post-graduation, which may be generalizable to other nations
Recommended from our members
Sintering microstructure and mechanical properties of PM manganese-molybdenum steels
YesThe effects of 0·5 wt-%Mo addition on the processing, microstructure, and strength of PM Fe¿3·5Mn¿0·7C steel are described. Water atomised and sponge irons, Astaloy 1·5Mo, milled ferromanganese, and graphite were the starting powders. During sintering in 75H2 /25N2 or pure hydrogen the dewpoint was controlled and monitored; in particular the effects of improving it from -35 to -60°C were investigated. Faster heating rates (20 K min-1), sufficient gas flowrates, milling the ferro alloy under nitrogen, a low dewpoint (<-60°C), and a getter powder can all contribute to the reduction or prevention of oxidation of the manganese, in particular formation of oxide networks in the sintered steels. For 600 MPa compaction pressure densities up to 7·1 g cm-3 were obtained; these were not significantly affected by sintering at temperatures up to 1180°C. The sintered microstructures were sensitively dependent on the cooling rate. Irrespective of the presence of Mo, slow furnace cooling at 4 K min-1 resulted in mainly pearlitic structures with some ferrite and coarse bainite, whereas fast cooling at 40 K min-1 produced martensite and some retained austenite, very fine pearlite, bainite, and some ferrite. Young's modulus, determined by tensile and ultrasonic tests, was in the range 110¿155 GPa. Sintering with -60°C dewpoint resulted in tensile and transverse rupture strengths of420 and 860 MPa for the Mn steel, rising to 530 and1130 MPa as a result of the Mo addition. This contrasts with strength decreases observed when processing included use of high oxygen containing ferromanganese and sintering with -35°C dewpoint
Permanent Draft Genome sequence for Frankia sp. strain CcI49, a Nitrogen-Fixing Bacterium Isolated from Casuarina cunninghamiana that Infects Elaeagnaceae
Frankia sp. strain CcI49 was isolated from Casuarina cunninghamiana nodules. However the strain was unable to re-infect Casuarina, but was able to infect other actinorhizal plants including Elaeagnaceae. Here, we report the 9.8-Mbp draft genome sequence of Frankia sp. strain CcI49 with a G+C content of 70.5 % and 7,441 candidate protein-encoding genes. Analysis of the genome revealed the presence of a bph operon involved in the degradation of biphenyls and polychlorinated biphenyls
Obstetric and haematological management and outcomes of women with placenta accreta spectrum by planned or urgent delivery : Secondary data analysis of a public referral hospital in Lebanon
We would like to thank Rafik Hariri University Hospital for providing the data for this studyPeer reviewe
Draft Genome Sequences for the Frankia sp. strains CgS1, CcI156 and CgMI4, Nitrogen-Fixing Bacteria Isolated from Casuarina sp. in Egypt
Frankia sp. strains CgS1, CcI156 and CgMI4 were isolated from Casuarina glauca and C. cunninghamiana nodules. Here, we report the 5.26-, 5.33- and 5.20-Mbp draft genome sequences of Frankia sp. strains CgS1, CcI156 and CgMI4, respectively. Analysis of the genome revealed the presence of high numbers of secondary metabolic biosynthetic gene clusters
Genome Diversification in Phylogenetic Lineages I and II of \u3ci\u3eListeria monocytogenes\u3c/i\u3e: Identification of Segments Unique to Lineage II Populations
Thirteen different serotypes of Listeria monocytogenes can be distinguished on the basis of variation in somatic and flagellar antigens. Although the known virulence genes are present in all serotypes, greater than 90% of human cases of listeriosis are caused by serotypes 1/2a, 1/2b, and 4b and nearly all outbreaks of food-borne listeriosis have been caused by serotype 4b strains. Phylogenetic analysis of these three common clinical serotypes places them into two different lineages, with serotypes 1/2b and 4b belonging to lineage I and 1/2a belonging to lineage II. To begin examining evolution of the genome in these serotypes, DNA microarray analysis was used to identify lineage-specific and serotype-specific differences in genome content. A set of 44 strains representing serotypes 1/2a, 1/2b, and 4b was probed with a shotgun DNA microarray constructed from the serotype 1/2a strain 10403s. Clones spanning 47 different genes in 16 different contiguous segments relative to the lineage II 1/2a genome were found to be absent in all lineage I strains tested (serotype 4b and 1/2b) and an additional nine were altered exclusively in 4b strains. Southern hybridization confirmed that conserved alterations were, in all but two loci, due to absence of the segments from the genome. Genes within these contiguous segments comprise five functional categories, including genes involved in synthesis of cell surface molecules and regulation of virulence gene expression. Phylogenetic reconstruction and examination of compositional bias in the regions of difference are consistent with a model in which the ancestor of the two lineages had the 1/2 somatic serotype and the regions absent in the lineage I genome arose by loss of ancestral sequences
Surface doping of rubrene single crystals by molecular electron donors and acceptors
The surface molecular doping of organic semiconductors can play an important role in the development of organic electronic or optoelectronic devices. Single-crystal rubrene remains a leading molecular candidate for applications in electronics due to its high hole mobility. In parallel, intensive research into the fabrication of flexible organic electronics requires the careful design of functional interfaces to enable optimal device characteristics. To this end, the present work seeks to understand the effect of surface molecular doping on the electronic band structure of rubrene single crystals. Our angle-resolved photoemission measurements reveal that the Fermi level moves in the band gap of rubrene depending on the direction of surface electron-transfer reactions with the molecular dopants, yet the valence band dispersion remains essentially unperturbed. This indicates that surface electron-transfer doping of a molecular single crystal can effectively modify the near-surface charge density, while retaining good charge-carrier mobility.Peer Reviewe
- …