1,913 research outputs found
Single-Port Laparoscopic Spleen Preserving Distal Pancreatectomy
Single-port laparoscopic surgery has become increasingly popular, with widened indication to more types of surgery. This report will present our initial experience with spleen-preserving distal pancreatectomy technique through a small transumbilical incision using the single-port approach for a cystic tumor of pancreatic body. The surgery was done using specialized single-port instruments and normal laparoscopic instruments. The total operative time for this surgery is 233 minutes, and it was completed without drains. Patient was discharged from the hospital on the third day postoperatively in good condition
Towards Optimizing Place Experience using Design Science Research and Augmented Reality Gamification
Water Dynamics at Protein Interfaces: Ultrafast Optical Kerr Effect Study
The behavior of water molecules surrounding a protein can have an important bearing on its structure and function. Consequently, a great deal of attention has been focused on changes in the relaxation dynamics of water when it is located at the protein surface. Here we use the ultrafast optical Kerr effect to study the H-bond structure and dynamics of aqueous solutions of proteins. Measurements are made for three proteins as a function of concentration. We find that the water dynamics in the first solvation layer of the proteins are slowed by up to a factor of 8 in comparison to those in bulk water. The most marked slowdown was observed for the most hydrophilic protein studied, bovine serum albumin, whereas the most hydrophobic protein, trypsin, had a slightly smaller effect. The terahertz Raman spectra of these protein solutions resemble those of pure water up to 5 wt % of protein, above which a new feature appears at 80 cm–1, which is assigned to a bending of the protein amide chain
Phosphorescent Sensor for Robust Quantification of Copper(II) Ion
A phosphorescent sensor based on a multichromophoric iridium(III) complex was synthesized and characterized. The construct exhibits concomitant changes in its phosphorescence intensity ratio and phosphorescence lifetime in response to copper(II) ion. The sensor, which is reversible and selective, is able to quantify copper(II) ions in aqueous media, and it detects intracellular copper ratiometrically.National Institute of General Medical Sciences (U.S.) ((Grant GM065519)Ewha Woman's University (Korea) (RP-Grant 2009
QCD Corrections to Spin Correlations in Top Quark Production at Lepton Colliders
Spin correlations, using a generic spin basis, are investigated to leading
order in QCD for top quark production at lepton colliders. Even though, these
radiative corrections induce an anomalous gamma/Z magnetic moment for the top
quarks and allow for single, real gluon emission, their effects on the top
quark spin orientation are very small. The final results are that the top (or
anti-top) quarks are produced in an essentially unique spin configuration in
polarized lepton collisions even after including the O(alpha_{s}) QCD
corrections.Comment: 32 pages, REVTeX, 13 Postscript figures, psfig.sty and here.sty are
required. Several references added, Tables 3, 4 and 5 are change
Serum amyloid A primes microglia for ATP-dependent interleukin-1\u3b2 release
Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves production of acute-phase proteins, including serum amyloid A (SAA). Interleukin-1\u3b2 (IL-1\u3b2), a master regulator of neuroinflammation produced by activated inflammatory cells of the myeloid lineage, in particular microglia, plays a key role in the pathogenesis of acute and chronic diseases of the peripheral nervous system and CNS. IL-1\u3b2 release is promoted by ATP acting at the purinergic P2X7 receptor (P2X7R) in cells primed with toll-like receptor (TLR) ligands
Crustal Azimuthal Anisotropy Beneath the Central North China Craton Revealed by Receiver Functions
To characterize crustal anisotropy beneath the central North China Craton (CNCC), we apply a recently developed deconvolution approach to effectively remove near-surface reverberations in the receiver functions recorded at 200 broadband seismic stations and subsequently determine the fast orientation and the magnitude of crustal azimuthal anisotropy by fitting the sinusoidal moveout of the P to S converted phases from the Moho and intracrustal discontinuities. The magnitude of crustal anisotropy is found to range from 0.06 s to 0.54Â s, with an average of 0.25 ± 0.08Â s. Fault-parallel anisotropy in the seismically active Zhangjiakou-Penglai Fault Zone is significant and could be related to fluid-filled fractures. Historical strong earthquakes mainly occurred in the fault zone segments with significant crustal anisotropy, suggesting that the measured crustal anisotropy is closely related to the degree of crustal deformation. The observed spatial distribution of crustal anisotropy suggests that the northwestern terminus of the fault zone probably ends at about 114°E. Also observed is a sharp contrast in the fast orientations between the western and eastern Yanshan Uplifts separated by the North-South Gravity Lineament. The NW-SE trending anisotropy in the western Yanshan Uplift is attributable to fossil crustal anisotropy due to lithospheric extension of the CNCC, while extensional fluid-saturated microcracks induced by regional compressive stress are responsible for the observed ENE-WSW trending anisotropy in the eastern Yanshan Uplift. Comparison of crustal anisotropy measurements and previously determined upper mantle anisotropy implies that the degree of crust-mantle coupling in the CNCC varies spatially
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease
The worldwide burden of sickle cell disease is enormous, with over 200,000 infants born with the disease each year in Africa alone. Induction of fetal hemoglobin is a validated strategy to improve symptoms and complications of this disease. The development of targeted therapies has been limited by the absence of discrete druggable targets. We developed a unique bead-based strategy for the identification of inducers of fetal hemoglobin transcripts in primary human erythroid cells. A small-molecule screen of bioactive compounds identified remarkable class-associated activity among histone deacetylase (HDAC) inhibitors. Using a chemical genetic strategy combining focused libraries of biased chemical probes and reverse genetics by RNA interference, we have identified HDAC1 and HDAC2 as molecular targets mediating fetal hemoglobin induction. Our findings suggest the potential of isoform-selective inhibitors of HDAC1 and HDAC2 for the treatment of sickle cell disease
- …