5,341 research outputs found
A Unified Theory of Matter Genesis: Asymmetric Freeze-In
We propose a unified theory of dark matter (DM) genesis and baryogenesis. It
explains the observed link between the DM density and the baryon density, and
is fully testable by a combination of collider experiments and precision tests.
Our theory utilises the "thermal freeze-in" mechanism of DM production,
generating particle anti-particle asymmetries in decays from visible to hidden
sectors. Calculable, linked, asymmetries in baryon number and DM number are
produced by the feeble interaction mediating between the two sectors, while the
out-of-equilibrium condition necessary for baryogenesis is provided by the
different temperatures of the visible and hidden sectors. An illustrative model
is presented where the visible sector is the MSSM, with the relevant CP
violation arising from phases in the gaugino and Higgsino masses, and both
asymmetries are generated at temperatures of order 100 GeV. Experimental
signals of this mechanism can be spectacular, including: long-lived metastable
states late decaying at the LHC; apparent baryon-number or lepton-number
violating signatures associated with these highly displaced vertices; EDM
signals correlated with the observed decay lifetimes and within reach of
planned experiments; and a prediction for the mass of the dark matter particle
that is sensitive to the spectrum of the visible sector and the nature of the
electroweak phase transition.Comment: LaTeX, 22 pages, 6 figure
Modified protein expression in the tectorial membrane of the cochlea reveals roles for the striated sheet matrix
The tectorial membrane (TM) of the mammalian cochlea is a complex extracellular matrix which, in response to acoustic stimulation, displaces the hair bundles of outer hair cells (OHCs), thereby initiating sensory transduction and amplification. Here, using TM segments from the basal, high-frequency region of the cochleae of genetically modified mice (including models of human hereditary deafness) with missing or modified TM proteins, we demonstrate that frequency-dependent stiffening is associated with the striated sheet matrix (SSM). Frequency-dependent stiffening largely disappeared in all three TM mutations studied where the SSM was absent either entirely or at least from the stiffest part of the TM overlying the OHCs. In all three TM mutations, dissipation of energy is decreased at low (<8 kHz) and increased at high (>8 kHz) stimulus frequencies. The SSM is composed of polypeptides carrying fixed charges, and electrostatic interaction between them may account for frequency-dependent stiffness changes in the material properties of the TM. Through comparison with previous in vivo measurements, it is proposed that implementation of frequency-dependent stiffening of the TM in the OHC attachment region facilitates interaction among tones, backward transmission of energy, and amplification in the cochlea
Detection of explosive markers using zeolite modified gas sensors
Detection of hidden explosive devices is a key priority for security and defence personnel around the globe. Electronic noses, based on metal oxide semiconductors (MOS), are a promising technology for creating inexpensive, portable and sensitive devices for such a purpose. An array of seven MOS gas sensors was fabricated by screen printing, based on WO3 and In2O3 inks. The sensors were tested against six gases, including four explosive markers: nitromethane, DMNB (2,3-dimetheyl-2,3-dinitrobutane), 2-ethylhexanol and ammonia. The gases were successfully detected with good sensitivity and selectivity from the array. Sensitivity was improved by overlaying or admixing the oxides with two zeolites, H-ZSM-5 and TS-1, and each showed improved responses to –NO2 and –OH moieties respectively. Admixtures in particular showed promise, with excellent sensitivity and good stability to humidity. Machine learning techniques were applied to a subset of the data and could accurately classify the gases detected, even when confounding factors were introduced
Generalized Model of Resonant Polymer-Coated Microcantilevers in Viscous Liquid Media
Expressions describing the resonant frequency and quality factor of a dynamically driven, polymer-coated microcantilever in a viscous liquid medium have been obtained. These generalized formulas are used to describe the effects the operational medium and the viscoelastic coating have on the device sensitivity when used in liquid-phase chemical sensing applications. Shifts in the resonant frequency are normally assumed proportional to the mass of sorbed analyte in the sensing layer. However, the expression for the frequency shift derived in this work indicates that the frequency shift is also dependent on changes in the sensing layer’s loss and storage moduli, changes in the moment of inertia, and changes in the medium of operation’s viscosity and density. Not accounting for these factors will lead to incorrect analyte concentration predictions. The derived expressions are shown to reduce to well-known formulas found in the literature for the case of an uncoated cantilever in a viscous liquid medium and the case of a coated cantilever in air or in a vacuum. The theoretical results presented are then compared to available chemical sensor data in aqueous and viscous solutions
Analysis of intrapulse chirp in CO2 oscillators
Pulsed single-frequency CO2 laser oscillators are often used as transmitters for coherent lidar applications. These oscillators suffer from intrapulse chirp, or dynamic frequency shifting. If excessive, such chirp can limit the signal-to-noise ratio of the lidar (by generating excess bandwidth), or limit the velocity resolution if the lidar is of the Doppler type. This paper describes a detailed numerical model that considers all known sources of intrapulse chirp. Some typical predictions of the model are shown, and simple design rules to minimize chirp are proposed
Parenting Styles and Youth Well-Being Across Immigrant Generations
This study examines generational patterns of parenting styles, the relationships between parenting styles and adolescent well-being among youth of Mexican origin, and the role of generational parenting style patterns in explaining generational patterns in youth behavior (delinquency and alcohol problems) and psychological well-being (depression and self-esteem). This study uses two waves of data from the National Longitudinal Study of Adolescent Health (Add Health). The proportion of teens with permissive parents increased with generation; other parenting styles declined. The rate of youth with behavioral problems increased with generation. Self-esteem improved with generation; depression scores did not. Bivariate generational patterns of behavioral and psychological outcomes are a function of the patterns seen for youth with permissive parents, coupled with the increase in the proportion of permissive parents with each successive generation. In contrast, these outcomes did not worsen with generation for youth with authoritative parents
- …