8,429 research outputs found

    cAMP Pulsing of Denuded Mouse Oocytes Increases Meiotic Resumption Via Activation of AMP-activated Protein Kinase

    Get PDF
    cAMP plays a critical role in the control of oocyte maturation, as a high level of cAMP maintains oocyte arrest at the first meiotic prophase. Yet this study shows that pulsing meiotically arrested denuded oocytes (DO) with cAMP induces oocyte maturation through the activation of AMP-activated protein kinase (PRKA). Short-term (3 h) pulsing of meiotically arrested oocytes with forskolin, an adenyl cyclase (AC) activator, increased oocyte cAMP, led to elevated AMP, and induced oocyte meiotic resumption compared to oocytes continuously cultured in the control medium with or without forskolin. Western analysis showed that germinal vesicle (GV)-stage oocytes after forskolin pulsing contained increased levels of phospho-acetyl CoA carboxylase (pACACA), a primary substrate of PRKA. Pulsing oocytes with the phosphodiesterase (PDE)-sensitive cAMP analog, 8-bromo-cAMP (8-Br-cAMP), also increased pACACA and pPRKA levels in GV-stage oocytes and induced oocyte meiotic resumption. Moreover, the PRKA inhibitors, compound C and araA, prevented 8-Br-cAMP pulsing-induced maturation. The lack of effect on meiotic induction and PRKA activation when oocytes were pulsed with the PDE-resistant activators of cAMP-dependent protein kinase, Sp-cAMP-AM and Sp-5,6-DCI-cBIMPS, suggests that cAMP degradation is required for pulsing-induced maturation. Pulsing oocytes with the exchange protein directly activated by cAMP (Epac)-specific activator, 8-CPT-2′-O-Me-cAMP, had no stimulatory effect on oocyte maturation, suggesting Epac is not involved in the pulsing-induced maturation. Taken together, these data support the idea that a transient increase in oocyte cAMP can induce meiotic resumption via activation of PRKA

    Radiometry spot measurement system

    Get PDF
    The radiometry spot measurement system (RSMS) has been designed for use in the Diffusive And Radiative Transport in Fires (DARTFire) experiment, currently under development at the NASA Lewis Research Center. The RSMS can measure the radiation emitted from a spot of specific size located on the surface of a distant radiation source within a controlled wavelength range. If the spot is located on a blackbody source, its radiation and temperature can be measured directly or indirectly by the RSMS. This report presents computer simulation results used to verify RSMS performance

    Significant Crustal Thinning beneath the Baikal Rift Zone: New Constraints from Receiver Function Analysis

    Get PDF
    Thinning of the crust of more than 10 km is a major feature of typical continental rifts such as the East African (EAR) and Rio Grande (RGR) rifts. However, numerous previous studies across the Baikal rift zone (BRZ), which has similar surface expressions and tectonic history, and more active seismicity relative to EAR and RGR, have resulted in contradicting amount of thinning, ranging from almost none to more than 10 km. We measure crustal thickness by stacking teleseismic receiver functions beneath 51 sites on the southern and central parts of the BRZ and adjacent Siberian Platform and Sayan-Baikal-Mongolian Foldbelt. Our measurements reveal that beneath the southern part of the Platform, the average crustal thickness is about 38 km, which is about 7 km thinner than that beneath the Foldbelt and the un-rifted part of the BRZ. The thinnest crust, 35 km, is found beneath the central part of the rift, and represents a significant thinning of about 10 km relative to the un-rifted parts of the BRZ

    AMPK Regulation of Mouse Oocyte Meiotic Resumption in Vitro

    Get PDF
    We have previously shown that the adenosine analog 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), an activator of AMP-activated protein kinase (AMPK), stimulates an increase in AMPK activity and induces meiotic resumption in mouse oocytes [Downs, S.M., Hudson, E.R., Hardie, D.G., 2002. A potential role for AMP-activated protein kinase in meiotic induction in mouse oocytes. Dev. Biol, 245, 200–212]. The present study was carried out to better define a causative role for AMPK in oocyte meiotic maturation. When microinjected with a constitutively active AMPK, about 20% of mouse oocytes maintained in meiotic arrest with dibutyryl cAMP (dbcAMP) were stimulated to undergo germinal vesicle breakdown (GVB), while there was no effect of catalytically dead kinase. Western blot analysis revealed that germinal vesicle (GV)-stage oocytes cultured in dbcAMP-containing medium plus AICAR possessed elevated levels of active AMPK, and this was confirmed by AMPK assays using a peptide substrate of AMPK to directly measure AMPK activity. AICAR-induced meiotic resumption and AMPK activation were blocked by compound C or adenine 9-beta-d-arabinofuranoside (araA, a precursor of araATP), both inhibitors of AMPK. Compound C failed to suppress adenosine uptake and phosphorylation, indicating that it did not block AICAR action by preventing its metabolism to the AMP analog, ZMP. 2′-Deoxycoformycin (DCF), a potent adenosine deaminase inhibitor, reversed the inhibitory effect of adenosine on oocyte maturation by modulating intracellular AMP levels and activating AMPK. Rosiglitazone, an anti-diabetic agent, stimulated AMPK activation in oocytes and triggered meiotic resumption. In spontaneously maturing oocytes, GVB was preceded by AMPK activation and blocked by compound C. Collectively, these results support the proposition that active AMPK within mouse oocytes provides a potent meiosis-inducing signal in vitro

    Orbital stability of two circumbinary planets around misaligned eccentric binaries

    Full text link
    With nn-body simulations we investigate the stability of tilted circumbinary planetary systems consisting of two nonzero mass planets. The planets are initially in circular orbits that are coplanar to each other, as would be expected if they form in a flat but tilted circumbinary gas disc and decouple from the disc within a time difference that is much less than the disc nodal precession period. We constrain the parameters of stable multiple planet circumbinary systems. Both planet-planet and planet-binary interactions can cause complex planet tilt oscillations which can destabilise the orbits of one or both planets. The system is considerably more unstable than the effects of these individual interactions would suggest, due to the interplay between these two interactions. The stability of the system is sensitive to the binary eccentricity, the orbital tilt and the semi-major axes of the two circumbinary planets. With an inner planet semi-major axis of 5 ab5\,a_{\rm b}, where aba_{\rm b} is semi-major axis of the binary, the system is generally stable if the outer planet is located at ≳8 ab\gtrsim 8\,a_{\rm b}, beyond the 2:1 mean motion resonance with the inner planet. For larger inner planet semi-major axis the system is less stable because the von-Zeipel--Kozai--Lidov mechanism plays a significant role, particularly for low binary-eccentricity cases. For the unstable cases, the most likely outcome is that one planet is ejected and the other remains bound on a highly eccentric orbit. Therefore we suggest that this instability is an efficient mechanism for producing free-floating planets.Comment: 13 pages, 10 figure

    Tilted circumbinary planetary systems as efficient progenitors of free-floating planets

    Full text link
    The dominant mechanism for generating free-floating planets has so far remained elusive. One suggested mechanism is that planets are ejected from planetary systems due to planet-planet interactions. However, instability around a single star requires a very compactly spaced planetary system. We find that around binary star systems instability can occur even with widely separated planets that are on tilted orbits relative to the binary orbit due to combined effects of planet-binary and planet-planet interactions, especially if the binary is on an eccentric orbit. We investigate the orbital stability of planetary systems with various planet masses and architectures. We find that the stability of the system depends upon the mass of the highest mass planet. The order of the planets in the system does not significantly affect stability but, generally, the most massive planet remains stable and the lower mass planets are ejected. The minimum planet mass required to trigger the instability is about that of Neptune for a circular orbit binary and a super-Earth of about 1010 Earth masses for highly eccentric binaries. Hence, we suggest that planet formation around misaligned binaries can be an efficient formation mechanism for free-floating planets. While most observed free-floating planets are giant planets, we predict that there should be more low-mass free floating planets that are as yet unobserved than higher mass planets.Comment: 10 pages, 2 figure

    Future Foam

    Full text link
    We study pocket universes which have zero cosmological constant and non-trivial boundary topology. These arise from bubble collisions in eternal inflation. Using a simplified dust model of collisions we find that boundaries of any genus can occur. Using a radiation shell model we perform analytic studies in the thin wall limit to show the existence of geometries with a single toroidal boundary. We give plausibility arguments that higher genus boundaries can also occur. In geometries with one boundary of any genus a timelike observer can see the entire boundary. Geometries with multiple disconnected boundaries can also occur. In the spherical case with two boundaries the boundaries are separated by a horizon. Our results suggest that the holographic dual description for eternal inflation, proposed by Freivogel, Sekino, Susskind and Yeh, should include summation over the genus of the base space of the dual conformal field theory. We point out peculiarities of this genus expansion compared to the string perturbation series.Comment: 23 pages, 6 figure

    ING116070: a study of the pharmacokinetics and antiviral activity of dolutegravir in cerebrospinal fluid in HIV-1-infected, antiretroviral therapy-naive subjects.

    Get PDF
    BackgroundDolutegravir (DTG), a once-daily, human immunodeficiency virus type 1 (HIV-1) integrase inhibitor, was evaluated for distribution and antiviral activity in cerebrospinal fluid (CSF).MethodsING116070 is an ongoing, single-arm, open-label, multicenter study in antiretroviral therapy-naive, HIV-1-infected adults. Subjects received DTG (50 mg) plus abacavir/lamivudine (600/300 mg) once daily. The CSF and plasma (total and unbound) DTG concentrations were measured at weeks 2 and 16. The HIV-1 RNA levels were measured in CSF at baseline and weeks 2 and 16 and in plasma at baseline and weeks 2, 4, 8, 12, and 16.ResultsThirteen white men enrolled in the study; 2 withdrew prematurely, 1 because of a non-drug-related serious adverse event (pharyngitis) and 1 because of lack of treatment efficacy. The median DTG concentrations in CSF were 18 ng/mL (range, 4-23 ng/mL) at week 2 and 13 ng/mL (4-18 ng/mL) at week 16. Ratios of DTG CSF to total plasma concentration were similar to the unbound fraction of DTG in plasma. Median changes from baseline in CSF (n = 11) and plasma (n = 12) HIV-1 RNA were -3.42 and -3.04 log10 copies/mL, respectively. Nine of 11 subjects (82%) had plasma and CSF HIV-1 RNA levels <50 copies/mL and 10 of 11 (91%) had CSF HIV-1 RNA levels <2 copies/mL at week 16.ConclusionsThe DTG concentrations in CSF were similar to unbound plasma concentrations and exceeded the in vitro 50% inhibitory concentration for wild-type HIV (0.2 ng/mL), suggesting that DTG achieves therapeutic concentrations in the central nervous system. The HIV-1 RNA reductions were similar in CSF and plasma. Clinical Trials Registration. NCT01499199
    • …
    corecore