77 research outputs found

    Tuning the magnetic and structural phase transitions of PrFeAsO via Fe/Ru spin dilution

    Full text link
    Neutron diffraction and muon spin relaxation measurements are used to obtain a detailed phase diagram of Pr(Fe,Ru)AsO. The isoelectronic substitution of Ru for Fe acts effectively as spin dilution, suppressing both the structural and magnetic phase transitions. The temperature of the tetragonal-orthorhombic structural phase transition decreases gradually as a function of x. Slightly below the transition temperature coherent precessions of the muon spin are observed corresponding to static magnetism, possibly reflecting a significant magneto-elastic coupling in the FeAs layers. Short range order in both the Fe and Pr moments persists for higher levels of x. The static magnetic moments disappear at a concentration coincident with that expected for percolation of the J1-J2 square lattice model

    Spin-dynamics of the low-dimensional magnet (CH3)2NH2CuCl3

    Full text link
    Dimethylammonium copper (II) chloride (also known as DMACuCl3 or MCCL) is a low dimensional S=1/2 quantum spin system proposed to be an alternating ferro-antiferromagnetic chain with similar magnitude ferromagnetic (FM) and antiferromagnetic (AFM) exchange interactions. Subsequently, it was shown that the existing bulk measurements could be adequately modeled by considering DMACuCl3 as independent AFM and FM dimer spin pairs. We present here new inelastic neutron scattering measurements of the spin-excitations in single crystals of DMACuCl3. These results show significant quasi-one-dimensional coupling, however the magnetic excitations do not propagate along the expected direction. We observe a band of excitations with a gap of 0.95 meV and a bandwidth of 0.82 meV.Comment: 3 pages, 2 figures included in text, submitted to proceedings of International Conference on Neutron Scattering, December 200

    Anisotropy of thermal conductivity oscillations in relation to the Kitaev spin liquid phase

    Full text link
    In the presence of external magnetic field, the Kitaev model could either hosts gapped topological anyon or gapless Majorana fermions. In α\alpha-RuCl3_3, the gapped and gapless cases are only separated by a thirty-degree rotation of the in-plane magnetic field vector. The presence/absence of the spectral gap is key for understanding the thermal transport behavior in α\alpha-RuCl3_3. Here, we study the anisotropy of the oscillatory features of thermal conductivity in α\alpha-RuCl3_3. We examine the oscillatory features of thermal conductivities (k//a, k//b) with fixed external fields and found distinct behavior for the gapped (B//a) and gapless (B//b) scenarios. Furthermore, we track the evolution of thermal resistivity (λa\lambda_{a}) and its oscillatory features with the rotation of in-plane magnetic fields from B//b to B//a. The thermal resistivity λ(B,θ)\lambda (B,\theta) display distinct rotational symmetries before and after the emergence of the field induced Kitaev spin liquid phase. These experiment data suggest close correlations between the oscillatory features of thermal conductivity, the underlying Kitaev spin liquid phase and the fermionic excitation it holds

    SpinWaves in the Frustrated Kagomé Lattice Antiferromagnet KFe\u3csub\u3e3\u3c/sub\u3e(OH)\u3csub\u3e6\u3c/sub\u3e(SO\u3csub\u3e4\u3c/sub\u3e)\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    The spin wave excitations of the S = 5/2 kagomé lattice antiferromagnet KFe3(OH)6(SO4)2 have been measured using high-resolution inelastic neutron scattering. We directly observe a flat mode which corresponds to a lifted ‘‘zero energy mode,’’ verifying a fundamental prediction for the kagomé lattice. A simple Heisenberg spin Hamiltonian provides an excellent fit to our spin wave data. The antisymmetric Dzyaloshinskii-Moriya interaction is the primary source of anisotropy and explains the low-temperature magnetization and spin structure

    The planar thermal Hall conductivity in the Kitaev magnet {\alpha}-RuCl3

    Full text link
    We report detailed measurements of the Onsager-like planar thermal Hall conductivity κxy\kappa_{xy} in α\alpha-RuCl3_3, a spin-liquid candidate of topical interest. With the thermal current JQ{\bf J}_{\rm Q} and magnetic field B∥a\bf B\parallel a (zigzag axis), the observed κxy/T\kappa_{xy}/T varies strongly with temperature TT (1-10 K). The results are well-described by bosonic edge excitations which evolve to topological magnons at large BB. Fits to κxy/T\kappa_{xy}/T yield a Chern number ∼1\sim 1 and a band energy ω1∼\omega_1\sim1 meV, in agreement with sharp modes seen in electron spin-resonance experiments. The bosonic character is incompatible with half-quantization of κxy/T\kappa_{xy}/T.Comment: 7 pages, 3 figure
    • …
    corecore