2,925 research outputs found

    Short-Term Belowground Responses to Thinning and Burning Treatments in Southwestern Ponderosa Pine Forests of the USA

    Get PDF
    Microbial-mediated decomposition and nutrient mineralization are major drivers of forest productivity. As landscape-scale fuel reduction treatments are being implemented throughout the fire-prone western United States of America, it is important to evaluate operationally how these wildfire mitigation treatments alter belowground processes. We quantified these important belowground components before and after management-applied fuel treatments of thinning alone, thinning combined with prescribed fire, and prescribed fire in ponderosa pine (Pinus ponderosa) stands at the Southwest Plateau, Fire and Fire Surrogate site, Arizona. Fuel treatments did not alter pH, total carbon and nitrogen (N) concentrations, or base cations of the forest floor (O horizon) or mineral soil (0–5 cm) during this 2-year study. In situ rates of net N mineralization and nitrification in the surface mineral soil (0–15 cm) increased 6 months after thinning with prescribed fire treatments; thinning only resulted in net N immobilization. The rates returned to pre-treatment levels after one year. Based on phospholipid fatty acid composition, microbial communities in treated areas were similar to untreated areas (control) in the surface organic horizon and mineral soil (0–5 cm) after treatments. Soil potential enzyme activities were not significantly altered by any of the three fuel treatments. Our results suggest that a variety of one-time alternative fuel treatments can reduce fire hazard without degrading soil fertility

    Observation of a possible superflare on Proxima Centauri

    Get PDF
    We report the observation on UT 2017 July 1 of an unusually powerful flare detected in near-infrared continuum photometry of Proxima Centauri. During a campaign monitoring the star for possible exoplanet transits, we identified an increase in Sloan i' flux leading to an observed peak at BJD 2457935.996 that was at least 10 per cent over pre-flare flux in this band. It was followed by a two-component rapid decline in the first 100 s that became a slower exponential decay with time constant of 1350 s. A smaller flare event 1300 s after the first added an incremental peak flux increase of 1 per cent of pre-flare flux. Since the onset of the flare was not fully time resolved at a cadence of 62 s, its actual peak value is unknown but greater than the time average over a single exposure of 20 s. The i' band is representative of broad optical and near-IR continuum flux over which the integrated energy of the flare is 100 times the stellar luminosity. This meets the criteria that established the concept of superflares on similar stars. The resulting implied ultraviolet flux and space weather could have had an extreme effect on the atmospheres of planets within the star's otherwise habitable zone

    Ecological restoration alters nitrogen transformations in a ponderosa pine-bunchgrass ecosystem

    Get PDF
    Ponderosa pinebunchgrass ecosystems of the western United States were altered following Euro-American settlement as grazing and fire suppression facilitated pine invasion of grassy openings. Pine invasion changed stand structure and fire regimes, motivating restoration through forest thinning and prescribed burning. To determine effects of restoration on soil nitrogen (N) transformations, we replicated (0.25-ha plots) the following experimental restoration treatments within a ponderosa pinebunchgrass community near Flagstaff, Arizona: (1) partial restorationthinning to presettlement conditions, (2) complete restorationremoval of trees and forest floor to presettlement conditions, native grass litter addition, and a prescribed burn, and (3) control. Within treatments, we stratified sampling to assess effects of canopy cover on N transformations. Forest floor net N mineralization and nitrification were similar among treatments on an areal basis, but higher in restoration treatments on a mass basis. In the mineral soil (015 cm), restoration treatments had 23 times greater annual net N mineralization and 35 times greater annual net nitrification than the control. Gross N transformation measurements indicate that elevated net N mineralization may be due to increased gross N mineralization, while elevated net nitrification may be due to decreased microbial immobilization of nitrate. Net N transformation rates beneath relict grassy openings were twice those beneath postsettlement pines. These short-term (1 yr) results suggest that ecological restoration increases N transformation rates and that prescribed burning may not be necessary to restore N cycling processes
    • …
    corecore