45 research outputs found

    What Makes a Problem GP-Hard? Analysis of a Tunably Difficult Problem in Genetic Programming

    Full text link
    This paper addresses the issue of what makes a problem genetic programming (GP)-hard by considering the binomial-3 problem. In the process, we discuss the efficacy of the metaphor of an adaptive fitness landscape to explain what is GP-hard. We indicate that, at least for this problem, the metaphor is misleading.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45613/1/10710_2004_Article_335714.pd

    Sugar sweetened beverage consumption by Australian children: Implications for public health strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High consumption of sugar sweetened beverages (SSBs) has been linked to unhealthy weight gain and nutrition related chronic disease. Intake of SSB among children remains high in spite of public health efforts to reduce consumption, including restrictions on marketing to children and limitations on the sale of these products in many schools. Much extant literature on Australian SSB consumption is out-dated and lacks information on several key issues. We sought to address this using a contemporary Australian dataset to examine purchase source, consumption pattern, dietary factors, and demographic profile of SSB consumption in children.</p> <p>Methods</p> <p>Data were from the 2007 Australian National Children's Nutrition and Physical Activity Survey, a representative random sample of 4,834 Australian children aged 2-16 years. Mean SSB intake by type, location and source was calculated and logistic regression models were fitted to determine factors associated with different levels of consumption.</p> <p>Results</p> <p>SSB consumption was high and age-associated differences in patterns of consumption were evident. Over 77% of SSB consumed was purchased via supermarkets and 60% of all SSB was consumed in the home environment. Less than 17% of SSB was sourced from school canteens and fast food establishments. Children whose parents had lower levels of education consumed more SSB on average, while children whose parents had higher education levels were more likely to favour sweetened juices and flavoured milks.</p> <p>Conclusions</p> <p>SSB intake by Australian children remains high and warrants continued public health attention. Evidence based and age-targeted interventions, which also recognise supermarkets as the primary source of SSB, are recommended to reduce SSB consumption among children. Additionally, education of parents and children regarding the health consequences of high consumption of both carbonated and non-carbonated SSBs is required.</p

    Statistical Use of Argonaute Expression and RISC Assembly in microRNA Target Identification

    Get PDF
    MicroRNAs (miRNAs) posttranscriptionally regulate targeted messenger RNAs (mRNAs) by inducing cleavage or otherwise repressing their translation. We address the problem of detecting m/miRNA targeting relationships in homo sapiens from microarray data by developing statistical models that are motivated by the biological mechanisms used by miRNAs. The focus of our modeling is the construction, activity, and mediation of RNA-induced silencing complexes (RISCs) competent for targeted mRNA cleavage. We demonstrate that regression models accommodating RISC abundance and controlling for other mediating factors fit the expression profiles of known target pairs substantially better than models based on m/miRNA expressions alone, and lead to verifications of computational target pair predictions that are more sensitive than those based on marginal expression levels. Because our models are fully independent of exogenous results from sequence-based computational methods, they are appropriate for use as either a primary or secondary source of information regarding m/miRNA target pair relationships, especially in conjunction with high-throughput expression studies

    Occupancy Modeling, Maximum Contig Size Probabilities and Designing Metagenomics Experiments

    Get PDF
    Mathematical aspects of coverage and gaps in genome assembly have received substantial attention by bioinformaticians. Typical problems under consideration suppose that reads can be experimentally obtained from a single genome and that the number of reads will be set to cover a large percentage of that genome at a desired depth. In metagenomics experiments genomes from multiple species are simultaneously analyzed and obtaining large numbers of reads per genome is unlikely. We propose the probability of obtaining at least one contig of a desired minimum size from each novel genome in the pool without restriction based on depth of coverage as a metric for metagenomic experimental design. We derive an approximation to the distribution of maximum contig size for single genome assemblies using relatively few reads. This approximation is verified in simulation studies and applied to a number of different metagenomic experimental design problems, ranging in difficulty from detecting a single novel genome in a pool of known species to detecting each of a random number of novel genomes collectively sized and with abundances corresponding to given distributions in a single pool
    corecore