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Abstract

In a two stage genome-wide association study (2S-GWAS), a sample of cases and controls is allocated into two groups, and
genetic markers are analyzed sequentially with respect to these groups. For such studies, experimental design
considerations have primarily focused on minimizing study cost as a function of the allocation of cases and controls to
stages, subject to a constraint on the power to detect an associated marker. However, most treatments of this problem
implicitly restrict the set of feasible designs to only those that allocate the same proportions of cases and controls to each
stage. In this paper, we demonstrate that removing this restriction can improve the cost advantages demonstrated by
previous 2S-GWAS designs by up to 40%. Additionally, we consider designs that maximize study power with respect to a
cost constraint, and show that recalculated power maximizing designs can recover a substantial amount of the planned
study power that might otherwise be lost if study funding is reduced. We provide open source software for calculating cost
minimizing or power maximizing 2S-GWAS designs.
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Introduction

Genome-wide association studies (GWAS) have become ubiq-

uitous in complex disease genetics. While the tools to conduct

these studies have improved substantially, the cost of conducting

them remains expensive. This is despite the plummeting cost per

genotype, and is a result of the increasing number of markers

being interrogated with each successive generation of genotyping

chip. Identifying efficient study designs thus remains important.

One popular efficient design for GWAS is the two stage GWAS

(2S-GWAS), which has been used for investigations of a wide

range of diseases, such as type 2 diabetes [1], schizophrenia [2],

lupus erythematosus [3], psoriasis [4], and breast cancer [5]. In the

2S-GWAS, a full sample of cases and controls is divided between a

first stage that employs a whole genome genotyping platform and

tests all available markers for association with the disease, and a

second stage that uses a more expensive custom genotyping

platform to follow up those markers exhibiting sufficiently strong

association with the disease in stage 1. The evidence of association

from both stages is then considered jointly to reach a final

determination of association between marker and disease. The 2S-

GWAS was shown to be more efficient than one stage analyses in

which all samples are genotyped on the whole genome platform by

Satagopan and Elston [6] and Thomas et al [7]. Since these early

investigations, continued attention has been paid to the theoretical

properties of two stage designs [8,9], and efforts have been made

to explicitly tie these theoretical properties to the problem of

computing experimental designs [10–15]. Recent summaries of

methodological and practical issues pertaining to 2S-GWAS are

provided by Thomas et al [16] and Van Steen [17].

In this paper, we are concerned with computing experimental

designs for 2S-GWAS. Our work is based upon that of Skol et al

[10,12], who 1) demonstrated that joint analyses that combine

information on case/control allele frequency differences across

stages are substantially more powerful than those based on

replication, although slightly less powerful than more expensive

one stage analyses; and 2) developed a software package (CaTS) to

compute minimum cost designs for 2S-GWAS, subject to both an

explicitly stated constraint on the minimum level of acceptable

study power, and an implicitly stated equality constraint on the

proportion of cases and controls allocated to the stages.

We extend this work in two ways. First, we improve the cost

efficiency of the 2S-GWAS by defining a procedure that allows

different proportions of cases and controls to be assigned to stages,

and developing software to compute minimum cost, power

constrained designs for the unrestricted 2S-GWAS. We demon-

strate that the unrestricted 2S-GWAS can be substantially more

cost effective than designs that restrict case and control allocation

proportions to be equal. In the studies we present here, which use

relatively modest differences of case and control sample sizes, we

achieve up to a 40% relative cost advantage as compared to the

2S-GWAS designs computed by CaTS and 80% compared to one

stage designs.

Second, and based upon our success in improving the cost

effectiveness of 2S-GWAS designs relative to a power constraint,

we consider 2S-GWAS designs that maximize power with respect

to a cost constraint. Calculating such designs may be useful for

maximizing the utility of studies that are cost constrained rather

than designed to meet a given level of power, or are subject to

reductions in funding relative to that required to achieve a given
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level of power in a cost minimizing 2S-GWAS. We examine the

latter case, and demonstrate that substantial amounts of power can

be retained by recalculating power maximizing experimental

designs subject to cost constraints, even for large reductions in

planned cost.

To support our results and assist applied researchers, our 2S-GWAS

design software is included with this paper (Code S1) and available at

http://www.bioinformatics.org/stanhope/2SGWASdesign/.

Methods

Defining a two stage GWAS with different allocations of
cases and controls to stage 1

Let the total number of cases and controls be N1 and N0 with

Rcc~N0=N1 defined as the ratio of controls to cases, let M be the

total number of biallelic markers to be genotyped in stage 1, and

let c1 and c2 be stage 1 and stage 2 per genotype costs. We define

the risk allele frequency at a hypothetical disease marker in cases

and controls as p1 and p0 respectively, and we assume Hardy-

Weinberg equilibrium within the population. Let p1 and p0 be the

respective proportions of cases and controls allocated to stage 1,

and let pM be the expected proportion of markers selected for

follow-up in stage 2 if no markers are associated with disease.

(Note that pM is not selected to control the type I error rate, but to

reduce cost by ensuring that uninteresting markers are not

genotyped in stage 2.) We suppose that the risk allele frequencies

of the cases and controls assigned to stages 1 and 2 ( p1,1,p0,1f g and

p1,2,p0,2f g where the second term in the subscript corresponds to

stage) are equal to p1 and p0 respectively. That is, there is no

population heterogeneity.

Stage 1 of the 2S-GWAS proceeds by comparing allele

frequencies at each marker, using the allocated cases and controls.

For each marker showing significant differences in allele frequen-

cies between cases and controls in stage 1 (where stage 1

significance is determined by pM ), a stage 2 test of allele

frequencies is calculated using the remaining cases and controls.

The stage 1 and 2 test statistics are then combined according to

their Fisher informations, and a joint statistic is used to evaluate

the total evidence of association with the disease. For clarity, in

Fig. 1 we provide a flowchart of the steps in this 2S-GWAS. The

following section provides technical details. Some of the presented

results have already been established (e.g. Theorem 1). However,

and for clarity, we choose to err on the side of completeness.

The stage 1 test statistic and its asymptotic behavior. In

stage 1, differences between the estimated case and control allele

frequencies p̂p1,1 and p̂p0,1 are evaluated using the statistic:

z1~
p̂p1,1{p̂p0,1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂p1,1(1{p̂p1,1)

2N1p1
z

p̂p0,1(1{p̂p0,1)

2N0p0

r ð1Þ

Formally, we wish to evaluate H0 : p1~p0 vs. H0 : p1=p0 by

comparing stage 1 case and control allele frequencies, and we do

so by using the asymptotic distribution of Z1.

Theorem 1: Z1 ?
L

N(m1,s2
1) where

m1~
p1{p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1(1{p1)

p1N1

z
p0(1{p0)

p0N0

r ,

s2
1~

p1(1{p1)

2p1N1

ffiffiffi
1

d

r
{(p1{p0)

(1{2p1)

4p1N1d3=2

 !2

z

p0(1{p0)

2p0N0
{

ffiffiffi
1

d

r
{(p1{p0)

(1{2p0)

4p0N0d3=2

 !2

and d~p1(1{p1)(2p1N1){1zp0(1{p0)(2p0N0){1.

(Proof provided in Appendix S1.)

Stage 1 critical value. Under H0, Z1 ?
L

N(0,1) follows from

Theorem 1. The critical value for the stage 1 test is therefore

determined by pM , and is defined as:

v1~W{1 1{pM=2ð Þ: ð2Þ

Note that under the null the test is expected to pass MpM markers

from stage 1 to stage 2.

Stage 1 power. Under the alternative, the power of the stage

1 test is:

P1(p)~W
{v1{m1

s1

� �
z1{W

v1{m1

s1

� �
ð3Þ

where m1 and s1 are as in Theorem 1, and we have stated P1 as a

function of p~ p0,p1,pMf g.
The stage 2 test statistic and its asymptotic

behavior. Stage 2 analysis proceeds for markers rejecting H0

in stage 1 by estimating case and control allele frequencies based

on stage 2 genotypes, p̂p1,2 and p̂p0,2, and calculating the statistic:

z2~
p̂p1,2{p̂p0,2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂p1,2(1{p̂p1,2)

2N1(1{p1)
z

p̂p0,2(1{p̂p0,2)

2N0(1{p0)

s : ð4Þ

The asymptotic distribution of Z2 under either the null or the

alternative is analogous to that of Z1.

Constructing the joint test statistic. After calculating z2,

the markers under consideration are reevaluated using a joint

analysis of stage 1 and stage 2 allele frequencies based on a null

model Fisher information-averaged test statistic. Letting w1 and w2

be the weights given to z1 and z2, we compute the joint analysis

test statistic as:

z~w1z1zw2z2, ð5Þ

where w2
1zw2

2~1, and w1 is defined:

w2
1~

p1N1ð Þ{1
z p0N0ð Þ{1

(1{p1)N1ð Þ{1
z (1{p0)N0ð Þ{1

z1

 !{1

(see Appendix S1 for details).

Stage 2 joint test critical value calculation. Let v1 and v

be critical values for the stage 1 and joint tests respectively. To be

significantly associated with disease a marker must be rejected at

both the first and second stages. Let R1~fDZ1Dwv1g and

R~fDZDwvg~fDw1Z1zw2Z2Dwvg be stage 1 and 2 test rejection

indicators; R1\R is the indicator that the marker is genome-wide

significant. The probability of this event under the null can be

evaluated by conditioning:

Improved Two-Stage GWAS Designs
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Pr0(R1\R)~Pr0(R D R1)Pr0(R1),

where Pr0 is the probability under the null model. To achieve a

marker-wise type I error equal to a�, Pr0(R D R1)Pr0(R1)~a� is to

be maintained. Pr0(R1)~pM by construction, therefore v must be

such that Pr0(R D R1)~a�p{1
M .

For example, if a�~0:05=M (e.g. a type I error equal to that of

a Bonferroni-controlled 5% test), then v is to be set such that:

Pr0(DZDwv D DZ1Dwv1)~
0:05

MpM

: ð6Þ

We compute Pr0(DZDwvDDZ1Dwv1) by integrating over the

conditional distribution of Z1 and decomposing Z into its stage-

specific portions, and numerically solve for v (see Appendix S1 for

details).

Stage 2 power. At the susceptibility marker, Z1 and Z2 are

N(m1,s2
1) and N(m2,s2

2) distributed (where m1 and s2
1 are defined

in Theorem 1, and analogously for m2 and s2
2). Let

P2(p) ð7Þ

be the stage 2 power stated in terms of p. Because of its

complexity, we omit providing an explicit form for P2(p) here, but

do number the equation to correspond to its reference in Fig. 1.

Obtaining the power of the joint test conditional on DZ1Dwv1 is

done with a computation analogous to that used to compute type I

error (see Appendix S1 for details and the explicit statement of the

equation).

Defining constrained minimum cost and maximum
power two stage designs

We define an optimal two stage design as that which achieves a

specified power at the least cost or, alternatively, that which

maximizes power for a given experimental cost. The genotyping

cost incurred when performing a 2S-GWAS is

C(p)~c1(p1N1zp0N0)Mzc2((1{p1)N1z(1{p0)N0)MpM ,

where c1 and c2 are the per marker genotyping costs for stages 1

Figure 1. Two stage GWAS flowchart. This flowchart describes the steps of our two stage GWAS. We begin by splitting the complete data into
two groups, to be used sequentially in stages 1 and 2. In the first stage, we evaluate associations of all markers with the disease. In the second stage,
we genotype only those markers shown to be associated in stage 1. We compute stage 2-specific test statistics for these markers, and then construct
joint test statistics based on those from both stages. The joint test statistics are used to make final assessments of disease association.
doi:10.1371/journal.pone.0042367.g001
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and 2, and the total power of the 2S-GWAS is P(p)~P1(p)P2(p).
The optimal cost minimized design is that having power of at least

P� with the lowest cost C(p). That is, the following constrained

optimization problem is to be solved:

min C(p)

s:t: P(p)§P�

The optimization problem determining a power maximizing, cost

constrained 2S-GWAS design is defined analogously:

max P(p)

s:t: C(p)ƒC�

Implementation
We developed algorithms in C to identify optimal 2S-GWAS

designs as a function of p. In our methods, the integration used to

calculate the joint statistic’s critical value and its power are

computed using rectangular cubature; stage 2 critical values are

obtained using the bisection method; and the three parameter

constrained cost minimization and power maximization problems

are solved using grid search. These algorithms are provided in

Code S1.

Evaluating the cost advantages of two stage designs
allowing unequal proportions of cases and controls
allocated to stage 1

We examined the cost benefits and optimal design parameters

for 2S-GWAS when not restricting case-control proportions in

stage 1 to be equal (i.e. p0~p1) under an array of experimental

conditions. Each condition was characterized by several factors

that influence the optimal design and its cost: the ratio of controls

to cases (Rcc); stage 2 per marker genotyping cost (c2, where stage

1 per marker genotyping cost is taken to be 1); disease prevalence

(k); and the population frequency of the risk allele (p). We

considered studies with N1~500 cases and M~100000 markers,

and determined case and control disease allele frequencies such

that a one stage GWAS would have 80% power under a

multiplicative model of genetic effects with experiment-wise type I

error rate of 5% and controlling for multiple testing with a

Bonferroni correction using the CaTS software ([10], [12]). The

full set of experimental conditions is outlined in Table S1.

For each experimental condition, we identified cost minimizing

2S-GWAS designs that would maintain 78% power both with and

without the p0~p1 restriction, using CaTS and the unrestricted

methods described in this paper respectively. (As suggested by [10]

and [12], 2S-GWAS designs typically target slightly lower power

levels than one stage analyses, and so we reduced our target power

by 2% from the one stage baseline.) Cost minimizing designs

found using the unrestricted method were determined to the

nearest 1% allocation of cases and controls to stage 1 (p1,p0) and

0.1% proportion of markers to be passed from stage 1 to stage 2

(pM ). We compared the costs of the one stage and optimal 2S-

GWAS designs and verified the powers of the 2S-GWAS designs

and critical values computed by the unrestricted methods using

100000 sets of sampled risk allele data. Finally, we evaluated the

power sensitivities of the cost minimizing 2S-GWAS designs

determined by both CaTS and our unrestricted method to batch

effects or genetic heterogeneity between stages by assuming the

second stage case and control disease allele frequency to be 90% of

that used to calculate design parameters. Using the new second

stage disease allele frequency, we then re-computed the powers of

the original 2S-GWAS designs and critical values using 100000

sets of sampled risk alleles. We repeated this process assuming the

second stage disease allele frequency was 110% of that specified.

Evaluating how much power is recovered by
recomputing experimental designs after reductions in
study funding

To examine how much power could be recovered by

recomputing experimental designs after a hypothetical reduction

in the funding available to a previously planned study, we focused

on the set of experimental conditions defined in Table S1 with

disease prevalence (k) of 10% and disease allele frequency (p) of

10%. For each experimental condition, we determined the

minimum cost 78% power unrestricted 2S-GWAS design, and

then calculated maximum power unrestricted 2S-GWAS designs

that were constrained to cost 50%, 75% and 90% of that. We

compared the maximum obtainable study power after cost

constraint to the original 78% target, verified the power of the

computed designs and critical values using 100000 sets of sampled

risk allele data, and determined the performance sensitivity of the

power maximizing designs to batch effects as we did in our

analogous study in cost minimizing designs.

Results

Two stage designs with unequal proportions of cases
and controls allocated to stage 1 are optimal when
controls outnumber cases

Minimum cost experimental design parameters and perfor-

mance characteristics for the full set of experimental conditions

described in Table S1 are provided in Tables S2 and S3. Here, we

provide plots of our results for three sets of conditions:

fk~1%,p~10%,c2~100g, letting Rcc = 1, 2, 4, and 8;

fk~1%,Rcc~8,c2~100g, letting p = 10, 25 and 50%; and

fk~1%,p~10%,Rcc~8g letting c2 = 1, 10 and 100 (where k is

disease prevalence, p the population disease allele frequency, c2

the stage 2 genotyping cost and Rcc the ratio of controls to cases).

Figures 2 and 3 describe the cost advantages of our unrestricted

methods and characteristics of its computed design parameters

respectively.

As in previous work [6,7], two stage designs computed by both

CaTS and our unrestricted algorithm have substantial cost

advantages relative to the one-stage design (Fig. 2). More

important from the perspective of this paper are the cost

advantages of unrestricted 2S-GWAS designs relative to those

computed by CaTS. This advantage increases as the ratio of

controls to cases or the cost of stage 2 genotyping increases, and as

population disease allele frequency decreases. For the experimen-

tal conditions plotted in Fig. 2, the unrestricted algorithm shows

up to a 40% cost advantage in comparison to CaTS. These results

are consistent with those provided in Tables S2 and S3, which

show that although there is little difference in cost performance in

2S-GWAS designs when the number of cases equal that of controls

(Rcc~1), when Rcc~8 there is a 10–40% cost advantage gained

by using unrestricted designs (taken across all other experimental

conditions). For more modest differences between the number of

cases and controls (Rcc~2,4), gains in cost efficiency can be

Improved Two-Stage GWAS Designs
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observed as disease allele frequency decreases. For example, when

p~10% we see a cost advantage to unrestricted designs of 10–

15% relative to those of CaTS.

Given the cost advantages obtained by removing the equality

constraint on the proportion of controls and cases (p0 and p1

respectively) allocated to stage 1, it would be expected that optimal

design parameters computed using the unrestricted procedure and

CaTS will differ. For the experimental conditions plotted in Fig. 3,

it can be observed that designs computed with the unrestricted

algorithm assign lower and higher proportions of controls and

cases (respectively) to stage 1 than those computed by CaTS, and

often reduce the proportion of markers passed to stage 2 (pM ).

Additionally, it is clear that the degree of difference in design

specification between the two methods can be influenced by each

of the ratio of controls to cases, population disease allele frequency

and stage 2 genotyping cost. The differences in design parameters

Figure 2. Relative cost curves for minimum cost designs. Cost curves for minimum cost, 78% power two stage GWAS designs calculated by
CaTS (blue) and the unrestricted methods described here (green) relative to those of one stage GWAS designs (red) are provided for three
experimental conditions: fk~1%,p~10%,c2~100g as a function of Rcc ; fk~1%,Rcc~8,c2~100g as a function of p; and fk~1%,p~10%,Rcc~8g
as a function of c2 (where k is disease prevalence, p the population disease allele frequency, c2 the stage 2 genotyping cost and Rcc the ratio of
controls to cases). Unrestricted methods show significant cost advantages in comparison to those computed by CaTS. Cost advantages increase as
Rcc increases, p decreases, and c2 increases.
doi:10.1371/journal.pone.0042367.g002
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shown in Fig. 3 are again consistent with the results presented in

Tables S2 and S3.

We note that the powers of the unrestricted 2S-GWAS designs

and critical values are verified in our simulation studies, with no

systematic deviation from the 78% target level (Tables S2 and S3).

In terms of differences between stage specific powers of the design,

both unrestricted 2S-GWAS designs and those proposed by CaTS

generally have higher stage 1 specific power than stage 2 power.

The influence of batch effects on power were similar for

experiments designed with and without the sample allocation

constraint; in both types of design, scaling stage 2 case and control

disease allele frequencies to 90 or 110% of those in stage 1 reduces

or increases the power of a proposed design by 5–10%

respectively. As the cost of stage 2 genotyping increases (holding

Figure 3. Design parameter curves for minimum cost designs. Two stage minimum cost, 78% power GWAS design parameters calculated by
CaTS (blue) and the unrestricted methods described here (green) are provided for three experimental conditions: fk~1%,p~10%,c2~100g as a
function of Rcc ; fk~1%,Rcc~8,c2~100g as a function of p; and fk~1%,p~10%,Rcc~8g as a function of c2 (where k is disease prevalence, p the
population disease allele frequency, c2 the stage 2 genotyping cost and Rcc the ratio of controls to cases). Each case is assigned a row, and design
parameter plots for p0 , p1 and pM (the proportion of controls and cases assigned to stage 1, and the proportion of markers expected to be passed to
stage 2) are displayed from left to right. Compared to designs computed by CaTS, designs computed without a p0~p1 constraint typically assign
lower and higher proportions of controls and cases (respectively) to stage 1, and pass a greater proportion of markers to stage 2. The degree of
difference in design specification between the two methods can be substantially influenced by each of Rcc, p and c2 .
doi:10.1371/journal.pone.0042367.g003
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the ratio of controls to cases constant) the sensitivity of a proposed

design to batch effects is reduced.

Although it is intuitive that removing an equality constraint for the

proportion of cases and controls allocated to stage 1 should improve

the performance of an optimal design, it is useful to illustrate why

this occurs. In Fig. 4, we plot power (red) and cost (blue) curves as

functions of the proportions of controls and cases allocated to stage 1

for the experimental conditions k~10%,p~50%,Rcc~1,c2~1f g,
and k~1%,p~10%,Rcc~8,c2~10f g, holding the expected pro-

portion of markers to be passed to stage 2 at the cost minimizing

values of 8.5% and 0.7% respectively (Tables S2 and S3). In these

plots, the green identity line represents designs where the p0~p1

constraint holds. For the conditions with equal number of controls

and cases (Rcc~1) the power surface is symmetric about and has

cost constrained maxima on the identity line. That is, in this case, the

optimal design should have equal proportions of cases and controls

allocated to stage 1. When the number of controls increases

(Rcc~8), both the power surface and cost curves become

asymmetric with the optimal design having p1wp0.

Power maximizing designs with unequal proportions of
cases and controls allocated to stage 1 can compensate
for cost reductions

Power maximizing experimental designs and their performance

characteristics are provided in Table S4. In Fig. 5, we describe the

results calculated for a disease with 10% prevalence (k), population

disease allele frequency (p) of 10%, and stage 2 genotyping cost (c2)

of 10, with control/case ratios (Rcc) of 1 and 8 (blue and green

lines respectively), as a function of the degree of relative cost

restriction (50–100% of that of the cost minimizing 78% power

design). As the experimental cost constraint is decreased from

100% of the minimum cost 78% power experimental design to

Figure 4. Power and cost surfaces. Power curves (red) and cost lines (blue) for the experimental conditions fk~10%,p~50%,Rcc~1,c2~1g and
fk~1%,p~10%,Rcc~8,c2~10g (where k is the disease prevalence, p the population disease allele frequency, c2 the stage 2 genotyping cost, and
Rcc the ratio of controls to cases) are plotted as a function of the proportion of controls (p0) and cases (p1) genotyped in stage 1, holding the
proportion of markers followed up in stage 2 (pM ) at their cost minimizing values of 8.5% and 0.7% respectively. In the first case (top), power curves
and cost lines are symmetric about the identify line, implying that the cost minimizing design will use equal case and control allocations. In the
second (bottom) they are asymmetric, implying that the cost minimizing design will have unequal case and control allocations.
doi:10.1371/journal.pone.0042367.g004

Figure 5. Performance and design characteristics of maximum power GWAS designs. The maximum achievable power and related
experimental design parameters for the experimental condition fk~10%,p~10%,c2~10g are plotted for control/case ratios Rcc~1,8 in blue and
green respectively, as a function of percentage cost of a minimum cost, 78% power design. Although increasing the degree of cost constraint does
have a negative effect on the achievable power of a 2S-GWAS, recomputing a power maximizing design can help to mitigate this. In comparison to
the original cost minimized design, power maximizing cost limited designs typically pass a lower proportion of markers to stage 2, and then increase
the relative power of the stage 2 test by allocating a greater proportion of both cases and controls to it.
doi:10.1371/journal.pone.0042367.g005
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50% of that design, the maximum power obtainable by a cost

constrained experimental design decreases from 78% to 44% and

68% for Rcc~1,8 respectively. In comparison to the baseline

minimum cost 78% power design, power maximizing cost limited

designs typically pass a lower proportion of markers to stage 2, and

then increase the relative power of the stage 2 test by allocating a

greater proportion of both cases and controls to it.

The effects of diminishing experimental cost on study design

and power for the experimental conditions plotted in Fig. 5 are

consistent with those for the other conditions reported in Table S4.

Additionally, Table S4 reports the results from validation studies

of experimental power, and analyses of the sensitivity of the

performance of power maximizing designs to batch effects. The

levels of power calculated for the power maximizing two stage

GWAS designs were verified by simulation. We observed a

reduced sensitivity of the performance of power maximizing

designs to batch effects as c2 increases (holding Rcc constant). This

is evidenced by tightening ranges of power estimates over 90 and

110% scaling of second stage disease allele frequencies. Increases

in Rcc (holding c2 constant) did not have any such effect.

Discussion

In many analyses of two stage genome-wide association studies

(2S-GWAS) experimental design, the proportions of cases and

controls allocated to stages are implicitly constrained to be the

same. In this paper we have expanded the framework for 2S-

GWAS originally proposed by Skol et al [10,12] to remove this

restriction. Using the expanded framework, we then demonstrated

that in fact, cost-minimizing designs computed with respect to a

desired level of statistical power often allocate different proportions

of cases and controls to each stage. Relative to those computed

under an equality constraint for proportions of cases and controls

allocated to stage 1, unrestricted designs typically allocate fewer

controls and more cases to stage 1, often pass fewer markers from

stage 1 to stage 2, and have higher stage 1 and lower stage 2 power

than those under the equality constraint. As would be expected,

such designs offer substantial cost advantages relative to a 2S-

GWAS that imposes equal allocation proportions. Such perfor-

mance improvements become larger as the ratio of controls to

cases increase, as the stage 2 per genotype cost increases, and as

the population disease allele frequency decreases.

Based on this result, we extended our analysis to the problem of

computing maximum power 2S-GWAS designs, subject to a cost

constraint. We demonstrated that when a study budget is reduced

below that of a minimum cost 2S-GWAS design meeting a

targeted level of power, recomputing a maximum power 2S-

GWAS design subject to the new cost constraint can retain much

of the desired power. Relative to the original minimum cost

design, power retention is achieved by allocating fewer cases and

controls to stage 1, and passing fewer markers from stage 1 to stage

2. That is, the reduction in cost is compensated for by collecting

less information in stage 1, focusing on fewer markers in stage 2,

and then using a more powerful stage 2-specific test.

We note that the results achieved here are in some respects

obvious - removal of a constraint from an optimization problem

always weakly results in improvements in performance. However,

the extent to which this is true for 2S-GWAS has not been made

explicit in previous studies. Additionally, many questions pertain-

ing to such improvements, such as why the optimal designs

changed as experimental parameters changed, could only be

understood by investigating the problem geometry. Related to

such investigations, our studies of the sensitivity of 2S-GWAS

designs to batch effects or genetic heterogeneity between stages

demonstrated that our unconstrained 2S-GWAS designs are not

substantially different (in that respect) from those that constrain

case and control sample proportions to be equal. The gains in

efficiency related to removing the sample proportion constraint do

not come at the cost of higher sensitivity to batch effects.

Because most 2S-GWAS designs constrain sample allocation

proportions to be the same across cases and controls, we suggest

the results presented here may have implications beyond our

particular study. For example, in [14], it was demonstrated that for

experiments using the same numbers of cases and controls, it is in

principle possible to obtain greater cost efficiencies by using three

or four stages rather than two. However, the use of differential

case/control allocation proportions for problems in which the

numbers of cases and controls differ was not considered. Likewise,

in [11], two stage GWAS designs using false discovery rate criteria

were considered, again while imposing that equal numbers of cases

and controls assigned to each stage. It is possible that using

techniques analogous to those described here could yield greater

levels of cost efficiency and power performance in such designs.

We recommend that when designing a 2S-GWAS, investigators

think carefully about the relative number of controls to cases,

genotyping costs, and disease allele frequencies. To assist in doing

do, our programs for identifying optimal two-stage GWAS designs

are provided in Code S1 or alternatively at http://www.

bioinformatics.org/stanhope/2SGWASdesign/.

Supporting Information

Appendix S1 Supporting derivations. This appendix pro-

vides mathematical details omitted in the main text, including the

proof of Theorem 1; the Fisher information stage weighting

calculation; and the stage 2 critical value and power calculations.

(PDF)

Code S1 Supporting software. This file contains all codes

necessary to calculate cost minimizing and power maximizing two-

stage GWAS designs with unequal proportions of cases and

controls allocated to stages. Instructions are provided for their

compilation and use, as well as example calculations.

(GZ)

Table S1 Experimental conditions for 2S-GWAS design
calculations. Experiments are described in terms of disease

prevalences (k); disease allele frequencies (p); ratio of controls to

cases (Rcc); stage 2 genotyping costs c2 (c1~1 is held constant);

and case/control allele frequencies (p1,p0). Numbers of cases and

markers are constant at N1~500 and M~100000.

(PDF)

Table S2 Cost minimizing 2S-GWAS designs and their
performance characteristics, k~10%. For experimental

conditions with k~10% in Table S1, Table S2 reports two-stage

78% power designs computed from both CaTS and the

unrestricted method. The costs of two-stage designs are compared

to those of 80% power one-stage designs, and the costs of the

unrestricted two-stage designs are compared to those of CaTS.

Verification of the power levels of unrestricted 2S-GWAS designs

is performed by Monte Carlo.

(PDF)

Table S3 Cost minimizing 2S-GWAS designs and their
performance characteristics, k~1%. For experimental

conditions with k~1% in Table S1, Table S3 reports two-stage

78% power designs computed from both CaTS and the

unrestricted method. The costs of two-stage designs are compared

to those of 80% power one-stage designs, and the costs of

unrestricted two-stage designs are compared to those of CaTS.
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Verification of the power levels of unrestricted 2S-GWAS designs

is performed by Monte Carlo.

(PDF)

Table S4 Power maximizing two stage GWAS designs
and their performance characteristics, k~10%,p~10%.
For all experimental conditions with k~10%,p~10% in Table

S1, Table S4 reports two-stage maximum power designs and the

powers they attain, with respect to a cost constraint expressed as a

percentage of the cost of the minimum cost designs reported in

Table S2.

(PDF)
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