67 research outputs found

    Identification through action potential clamp of proarrhythmic consequences of the short QT syndrome T618I hERG 'hotspot' mutation

    Get PDF
    The T618I KCNH2-encoded hERG mutation is the most frequently observed mutation in genotyped cases of the congenital short QT syndrome (SQTS), a cardiac condition associated with ventricular fibrillation and sudden death. Most T618I hERG carriers exhibit a pronounced U wave on the electrocardiogram and appear vulnerable to ventricular, but not atrial fibrillation (AF). The basis for these effects is unclear. This study used the action potential (AP) voltage clamp technique to determine effects of the T618I mutation on hERG current (I(hERG)) elicited by APs from different cardiac regions. Whole-cell patch-clamp recordings were made at 37 °C of I(hERG) from hERG-transfected HEK-293 cells. Maximal I(hERG) during a ventricular AP command was increased ∼4-fold for T618I I(hERG) and occurred much earlier during AP repolarization. The mutation also increased peak repolarizing currents elicited by Purkinje fibre (PF) APs. Maximal wild-type (WT) I(hERG) current during the PF waveform was 87.2 ± 4.5% of maximal ventricular repolarizing current whilst for the T618I mutant, the comparable value was 47.7 ± 2.7%. Thus, the T618I mutation exacerbated differences in repolarizing I(hERG) between PF and ventricular APs; this could contribute to heterogeneity of ventricular-PF repolarization and consequently to the U waves seen in T618I carriers. The comparatively shorter duration and lack of pronounced plateau of the atrial AP led to a smaller effect of the T618I mutation during the atrial AP, which may help account for the lack of reported AF in T618I carriers. Use of a paired ventricular AP protocol revealed an alteration to protective I(hERG) transients that affect susceptibility to premature excitation late in AP repolarization/early in diastole. These observations may help explain altered arrhythmia susceptibility in this form of the SQTS

    New synthetic cannabinoids and the potential for cardiac arrhythmia risk

    Get PDF
    Synthetic cannabinoid receptor agonists (SCRAs) have been associated with QT interval prolongation. Limited preclinical information on SCRA effects on cardiac electrogenesis results from the rapid emergence of new compounds and restricted research availability. We used two machine-learning-based tools to evaluate seven novel SCRAs' interaction potential with the hERG potassium channel, an important drug antitarget. Five SCRAs were predicted to have the ability to block the hERG channel by both prediction tools; ADB-FUBIATA was predicted to be a strong hERG blocker. ADB-5Br-INACA and ADB-4en-PINACA showed varied predictions. These findings highlight potentially proarrhythmic hERG block by novel SCRAs, necessitating detailed safety evaluations

    In situ monolayer patch clamp of acutely stimulated human iPSC-derived cardiomyocytes promotes consistent electrophysiological responses to SK channel inhibition

    Get PDF
    Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) represent an in vitro model of cardiac function. Isolated iPSC-CMs, however, exhibit electrophysiological heterogeneity which hinders their utility in the study of certain cardiac currents. In the healthy adult heart, the current mediated by small conductance, calcium-activated potassium (SK) channels (ISK) is atrial-selective. Functional expression of ISK within atrial-like iPSC-CMs has not been explored thoroughly. The present study therefore aimed to investigate atrial-like iPSC-CMs as a model system for the study of ISK. iPSCs were differentiated using retinoic acid (RA) to produce iPSC-CMs which exhibited an atrial-like phenotype (RA-iPSC-CMs). Only 18% of isolated RA-iPSC-CMs responded to SK channel inhibition by UCL1684 and isolated iPSC-CMs exhibited substantial cell-to-cell electrophysiological heterogeneity. This variability was significantly reduced by patch clamp of RA-iPSC-CMs in situ as a monolayer (iPSC-ML). A novel method of electrical stimulation was developed to facilitate recording from iPSC-MLs via In situ Monolayer Patch clamp of Acutely Stimulated iPSC-CMs (IMPASC). Using IMPASC, &gt; 95% of iPSC-MLs could be paced at a 1 Hz. In contrast to isolated RA-iPSC-CMs, 100% of RA-iPSC-MLs responded to UCL1684, with APD50 being prolonged by 16.0 ± 2.0 ms (p &lt; 0.0001; n = 12). These data demonstrate that in conjunction with IMPASC, RA-iPSC-MLs represent an improved model for the study of ISK. IMPASC may be of wider value in the study of other ion channels that are inconsistently expressed in isolated iPSC-CMs and in pharmacological studies.<br/

    Inducing Ito,f and phase 1 repolarization of the cardiac action potential with a Kv4.3/KChIP2.1 bicistronic transgene

    Get PDF
    The fast transient outward potassium current (I(to,f)) plays a key role in phase 1 repolarization of the human cardiac action potential (AP) and its reduction in heart failure (HF) contributes to the loss of contractility. Therefore, restoring I(to,f) might be beneficial for treating HF. The coding sequence of a P2A peptide was cloned, in frame, between Kv4.3 and KChIP2.1 genes and ribosomal skipping was confirmed by Western blotting. Typical I(to,f) properties with slowed inactivation and accelerated recovery from inactivation due to the association of KChIP2.1 with Kv4.3 was seen in transfected HEK293 cells. Both bicistronic components trafficked to the plasmamembrane and in adenovirus transduced rabbit cardiomyocytes both t-tubular and sarcolemmal construct labelling appeared. The resulting current was similar to I(to,f) seen in human ventricular cardiomyocytes and was 50% blocked at ~0.8 mmol/l 4-aminopyridine and increased ~30% by 5 μmol/l NS5806 (an I(to,f) agonist). Variation in the density of the expressed I(to,f), in rabbit cardiomyocytes recapitulated typical species-dependent variations in AP morphology. Simultaneous voltage recording and intracellular Ca(2+) imaging showed that modification of phase 1 to a non-failing human phenotype improved the rate of rise and magnitude of the Ca(2+) transient. I(to,f) expression also reduced AP triangulation but did not affect I(Ca,L) and I(Na) magnitudes. This raises the possibility for a new gene-based therapeutic approach to HF based on selective phase 1 modification

    Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking

    Get PDF
    The slow delayed-rectifier potassium current (IKs) is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1) channel requires phosphatidylinositol-4,5-bisphosphate (PIP2) binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel-phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID) system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4)P) at the plasma membrane (PM) or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4)P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1). Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4)P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM.: This work was funded by the British Heart Foundation (BHF). BHF grant numbers: [FS/12/21/ 29482 and RG/15/15/31742]. S.C.H is supported by a BHF Intermediate Basic Science Research Fellowship [FS/12/59/29756]. The work was facilitated by The National Institute for Health Research Barts Biomedical Research Centre

    Inhibition of the hERG potassium channel by phenanthrene:a polycyclic aromatic hydrocarbon pollutant

    Get PDF
    The lipophilic polycyclic aromatic hydrocarbon (PAH) phenanthrene is relatively abundant in polluted air and water and can access and accumulate in human tissue. Phenanthrene has been reported to interact with cardiac ion channels in several fish species. This study was undertaken to investigate the ability of phenanthrene to interact with hERG (human Ether-à-go-go-Related Gene) encoded Kv11.1 K(+) channels, which play a central role in human ventricular repolarization. Pharmacological inhibition of hERG can be proarrhythmic. Whole-cell patch clamp recordings of hERG current (I(hERG)) were made from HEK293 cells expressing wild-type (WT) and mutant hERG channels. WT I(hERG1a) was inhibited by phenanthrene with an IC(50) of 17.6 ± 1.7 µM, whilst I(hERG1a/1b) exhibited an IC(50) of 1.8 ± 0.3 µM. WT I(hERG) block showed marked voltage and time dependence, indicative of dependence of inhibition on channel gating. The inhibitory effect of phenanthrene was markedly impaired by the attenuated inactivation N588K mutation. Remarkably, mutations of S6 domain aromatic amino acids (Y652, F656) in the canonical drug binding site did not impair the inhibitory action of phenanthrene; the Y652A mutation augmented I(hERG) block. In contrast, the F557L (S5) and M651A (S6) mutations impaired the ability of phenanthrene to inhibit I(hERG), as did the S624A mutation below the selectivity filter region. Computational docking using a cryo-EM derived hERG structure supported the mutagenesis data. Thus, phenanthrene acts as an inhibitor of the hERG K(+) channel by directly interacting with the channel, binding to a distinct site in the channel pore domain. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00018-021-03967-8

    Investigating the Complex Arrhythmic Phenotype Caused by the Gain-of-Function Mutation KCNQ1-G229D

    Get PDF
    British Heart Foundation (BHF) (FS/12/59/29756 to SH, RG/15/15/31742 to AT, FS/17/22/32644 to AB-O, and SP/15/9/31605, RG/15/6/31436, PG/14/59/31000, RG/14/1/30588, P47352/Centre for Regenerative Medicine to CD)National Institute for Health Research Barts Biomedical Research CentreWellcome Trust (100246/Z/12/Z to BR and XZ)National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/P001076/1 to AB-O, CRACK-IT. FULL PROPOSAL code 35911-259146., NC/K000225/1 to CD)Engineering and Physical Sciences Research Council Impact Acceleration Award (EP/K503769/1 to BR)CompBioMed project (No. 675451 to BR)Oxford BHF Centre of Research Excellence (RE/08/004/23915 and RE/13/1/30181 to BR)China Scholarship Council to XZBIRAX (04BX14CDLG to CD)Medical Research Council (MR/M017354/1 to CD)Heart Research United Kingdom (TRP01/12 to CD

    CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy

    Get PDF
    Aims: Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results: CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-?-myosin heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion: Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-?MHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and ?MHC to energy-efficient ?MHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms

    AI-based dimensional neuroimaging system for characterizing heterogeneity in brain structure and function in major depressive disorder:COORDINATE-MDD consortium design and rationale

    Get PDF
    BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project
    corecore