7 research outputs found

    Cannula Implantation into the Cisterna Magna of Rodents

    No full text
    Cisterna magna cannulation (CMc) is a straightforward procedure that enables direct access to the cerebrospinal fluid (CSF) without operative damage to the skull or the brain parenchyma. In anesthetized rodents, the exposure of the dura mater by blunt dissection of the neck muscles allows the insertion of a cannula into the cisterna magna (CM). The cannula, composed either by a fine beveled needle or borosilicate capillary, is attached via a polyethylene (PE) tube to a syringe. Using a syringe pump, molecules can then be injected at controlled rates directly into the CM, which is continuous with the subarachnoid space. From the subarachnoid space, we can trace CSF fluxes by convective flow into the perivascular space around penetrating arterioles, where solute exchange with the interstitial fluid (ISF) occurs. CMc can be performed for acute injections immediately following the surgery, or for chronic implantation, with later injection in anesthetized or awake, freely moving rodents. Quantitation of tracer distribution in the brain parenchyma can be performed by epifluorescence, 2-photon microscopy, and magnetic resonance imaging (MRI), depending on the physico-chemical properties of the injected molecules. Thus, CMc in conjunction with various imaging techniques offers a powerful tool for assessment of the glymphatic system and CSF dynamics and function. Furthermore, CMc can be utilized as a conduit for fast, brain-wide delivery of signaling molecules and metabolic substrates that could not otherwise cross the blood brain barrier (BBB)

    Plasma FGF21 concentrations are regulated by glucose independently of insulin and GLP-1 in lean, healthy humans

    No full text
    BACKGROUND: Fibroblast growth factor 21 (FGF21) treatment improves metabolic homeostasis in diverse species, including humans. Physiologically, plasma FGF21 levels increase modestly after glucose ingestion, but it is unclear whether this is mediated by glucose itself or due to a secondary effect of postprandial endocrine responses. A refined understanding of the mechanisms that control FGF21 release in humans may accelerate the development of small-molecule FGF21 secretagogues to treat metabolic disease. This study aimed to determine whether FGF21 secretion is stimulated by elevations in plasma glucose, insulin, or glucagon-like peptide-1 (GLP-1) in humans. METHODS: Three groups of ten healthy participants were included in a parallel-group observational study. Group A underwent a hyperglycemic infusion; Group B underwent a 40 mU/m(2)/min hyperinsulinemic euglycemic clamp; Group C underwent two pancreatic clamps (to suppress endogenous insulin secretion) with euglycemic and hyperglycemic stages with an infusion of either saline or 0.5 pmol/kg/min GLP-1. Plasma FGF21 concentrations were measured at baseline and during each clamp stage by ELISA. RESULTS: Plasma FGF21 was unaltered during hyperglycemic infusion and hyperinsulinemic euglycemic clamps, compared to baseline. FGF21 was, however, increased by hyperglycemia under pancreatic clamp conditions (P < 0.05), while GLP-1 infusion under pancreatic clamp conditions did not change circulating FGF21 levels. CONCLUSION: Increases in plasma FGF21 are likely driven directly by changes in plasma glucose independent of changes in insulin or GLP-1 secretion. Ecologically valid postprandial investigations are now needed to confirm our observations from basic science infusion models

    FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver

    No full text
    The liver is an important integrator of nutrient metabolism, yet no liver-derived factors regulating nutrient preference or carbohydrate appetite have been identified. Here we show that the liver regulates carbohydrate intake through production of the hepatokine fibroblast growth factor 21 (FGF21), which markedly suppresses consumption of simple sugars, but not complex carbohydrates, proteins, or lipids. Genetic loss of FGF21 in mice increases sucrose consumption, whereas acute administration or overexpression of FGF21 suppresses the intake of both sugar and non-caloric sweeteners. FGF21 does not affect chorda tympani nerve responses to sweet tastants, instead reducing sweet-seeking behavior and meal size via neurons in the hypothalamus. This liver-to-brain hormonal axis likely represents a negative feedback loop as hepatic FGF21 production is elevated by sucrose ingestion. We conclude that the liver functions to regulate macronutrient-specific intake by producing an endocrine satiety signal which acts centrally to suppress the intake of “sweets.
    corecore