7 research outputs found

    Testing a global standard for quantifying species recovery and assessing conservation impact.

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    Responding to a surge in overdose deaths: perspectives from US syringe services programs

    No full text
    Abstract Background US overdose deaths have reached a record high. Syringe services programs (SSPs) play a critical role in addressing this crisis by providing multiple services to people who use drugs (PWUD) that help prevent overdose death. This study examined the perspectives of leadership and staff from a geographically diverse sample of US SSPs on factors contributing to the overdose surge, their organization’s response, and ongoing barriers to preventing overdose death. Methods From 2/11/2021 to 4/23/2021, we conducted semi-structured interviews with leadership and staff from 27 SSPs sampled from the North American Syringe Exchange Network directory. Interviews were transcribed and qualitatively analyzed using a Rapid Assessment Process. Results Respondents reported that increased intentional and unintentional fentanyl use (both alone and combined with other substances) was a major driver of the overdose surge. They also described how the COVID-19 pandemic increased solitary drug use and led to abrupt increases in use due to life disruptions and worsened mental health among PWUD. In response to this surge, SSPs have increased naloxone distribution, including providing more doses per person and expanding distribution to people using non-opioid drugs. They are also adapting overdose prevention education to increase awareness of fentanyl risks, including for people using non-opioid drugs. Some are distributing fentanyl test strips, though a few respondents expressed doubts about strips’ effectiveness in reducing overdose harms. Some SSPs are expanding education and naloxone training/distribution in the broader community, beyond PWUD and their friends/family. Respondents described several ongoing barriers to preventing overdose death, including not reaching certain groups at risk of overdose (PWUD who do not inject, PWUD experiencing homelessness, and PWUD of color), an inconsistent naloxone supply and lack of access to intranasal naloxone in particular, inadequate funding, underestimates of overdoses, legal/policy barriers, and community stigma. Conclusions SSPs remain essential in preventing overdose deaths amid record numbers likely driven by increased fentanyl use and COVID-19-related impacts. These findings can inform efforts to support SSPs in this work. In the face of ongoing barriers, support for SSPs—including increased resources, political support, and community partnership—is urgently needed to address the worsening overdose crisis

    Body-composition changes in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)-2 study: A 2-y randomized controlled trial of calorie restriction in nonobese humans

    No full text
    Background: Calorie restriction (CR) retards aging and increases longevity in many animal models. However, it is unclear whether CR can be implemented in humans without adverse effects on body composition.Objective: We evaluated the effect of a 2-y CR regimen on body composition including the influence of sex and body mass index (BMI; in kg/m2) among participants enrolled in CALERIE-2 (Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy), a multicenter, randomized controlled trial.Design: Participants were 218 nonobese (BMI: 21.9-28.0) adults aged 21-51 y who were randomly assigned to 25% CR (CR, n = 143) or ad libitum control (AL, n = 75) in a 2:1 ratio. Measures at baseline and 12 and 24 mo included body weight, waist circumference, fat mass (FM), fat-free mass (FFM), and appendicular mass by dual-energy X-ray absorptiometry; activity-related energy expenditure (AREE) by doubly labeled water; and dietary protein intake by self-report. Values are expressed as means ± SDs.Results: The CR group achieved 11.9% ± 0.7% CR over 2-y and had significant decreases in weight (-7.6 ± 0.3 compared with 0.4 ± 0.5 kg), waist circumference (-6.2 ± 0.4 compared with 0.9 ± 0.5 cm), FM (-5.4 ± 0.3 compared with 0.5 ± 0.4 kg), and FFM (-2.0 ± 0.2 compared with -0.0 ± 0.2 kg) at 24 mo relative to the AL group (all between-group P < 0.001). Moreover, FFM as a percentage of body weight at 24 mo was higher, and percentage of FM was lower in the CR group than in the AL. AREE, but not protein intake, predicted preservation of FFM during CR (P < 0.01). Men in the CR group lost significantly more trunk fat (P = 0.03) and FFM expressed as a percentage of weight loss (P < 0.001) than women in the CR group.Conclusions: Two years of CR had broadly favorable effects on both whole-body and regional adiposity that could facilitate health span in humans. The decrements in FFM were commensurate with the reduced body mass; although men in the CR group lost more FFM than the women did, the percentage of FFM in the men in the CR group was higher than at baseline. CALERIE was registered at clinicaltrials.gov as NCT00427193

    Evolution of genes and genomes on the Drosophila phylogeny

    No full text
    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species

    Evolution of genes and genomes on the Drosophila phylogeny

    Get PDF
    Affiliations des auteurs : cf page 216 de l'articleInternational audienceComparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species
    corecore