17 research outputs found

    Long live the queen: studying aging in social insects

    Get PDF
    Aging is a fascinating, albeit controversial, chapter in biology. Few other subjects have elicited more than a century of ever-increasing scientific interest. In this review, we discuss studies on aging in social insects, a group of species that includes ants and termites, as well as certain bee and wasp species. One striking feature of social insects is the lifespan of queens (reproductive females), which can reach nearly 30 years in some ant species. This is over 100 times the average lifespan of solitary insects. Moreover, there is a tremendous variation in lifespan among castes, with queens living up to 500 times longer than males and 10 times longer than workers (non-reproductive individuals). This lifespan polymorphism has allowed researchers to test the evolutionary theory of aging and - more recently - to investigate the proximate causes of aging. The originality of these studies lies in their use of naturally evolved systems to address questions related to aging and lifespan determination that cannot be answered using the conventional model organism

    An annotated cDNA library and microarray for large-scale gene-expression studies in the ant Solenopsis invicta

    Get PDF
    Ants display a range of fascinating behaviors, a remarkable level of intra-species phenotypic plasticity and many other interesting characteristics. Here we present a new tool to study the molecular mechanisms underlying these traits: a tentatively annotated expressed sequence tag (EST) resource for the fire ant Solenopsis invicta. From a normalized cDNA library we obtained 21,715 ESTs, which represent 11,864 putatively different transcripts with very diverse molecular functions. All ESTs were used to construct a cDNA microarray

    Fourmidable: a database for ant genomics

    Get PDF
    BACKGROUND: Fourmidable is an infrastructure to curate and share the emerging genetic, molecular, and functional genomic data and protocols for ants. DESCRIPTION: The Fourmidable assembly pipeline groups nucleotide sequences into clusters before independently assembling each cluster. Subsequently, assembled sequences are annotated via Interproscan and BLAST against general and insect-specific databases. Gene-specific information can be retrieved using gene identifiers, searching for similar sequences or browsing through inferred Gene Ontology annotations. The database will readily scale as ultra-high throughput sequence data and sequences from additional species become available. CONCLUSION: Fourmidable currently houses EST data from two ant species and microarray gene expression data for one of these. Fourmidable is publicly available at http://fourmidable.unil.ch

    TIM-family Proteins Promote Infection of Multiple Enveloped Viruses through Virion-associated Phosphatidylserine

    Get PDF
    Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) specifically bind phosphatidylserine (PS). TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs) pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies

    Identification of the HIT-45 protein from Trypanosoma brucei as an FHIT protein/dinucleoside triphosphatase: Substrate specificity studies on the recombinant and endogenous proteins

    No full text
    A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5′-mRNA cap, i.e., m7GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m7GMP (or m2,7GMP) as one of the reaction products. Interestingly, m7Gpppm3N6, N6, 2′OA was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m7Gpppm3N6, N6, 2′OApm2′OApm2′OCpm2N3, 2′OU, that occurs in these organisms

    TIM1-mediated pseudovirus internalization does not always coincide with TIM1-mediated entry enhancement.

    No full text
    <p>(A) Some pseudoviruses that do not use hTIM1 for productive entry are still efficiently internalized by hTIM1. Mock- or hTIM1-transduced 293T cells were infected for 2 h with purified, RT-activity normalized MLVgag-GFP pseudovirions. Uninternalized virions were detached by acid-stripping and extensive trypsinization, after which internalized virions were detected by flow cytometry. Data shown are representative of two independent experiments performed in duplicates. (B) hTIM1-mediated pseudovirus internalization is blocked by PS-containing liposomes. Mock- or hTIM1-transduced 293T cells were preincubated for 20 min at room temperature with medium alone (none), or with liposomes consisting of either 50% PS and 50% PC (PS/PC) or PC alone (PC). MLVgag-GFP pseudovirions, prepared as in A, were then added for a 2 h infection at 37°C, after which bound virions were detached and internalized virions were detected as in A. Figure shows mean+SD of two independent, duplicated experiments.</p

    hTIM1 promotes infection mediated by a range of viral entry proteins.

    No full text
    <p>(A) Human 293T cells do not express TIM1. 293T and control cells were stained with anti-hTIM1 antibody (red) or with mFc (black). (B) Murine 3T3 cells do not express TIM1. 3T3 and control cells were stained with anti-mTIM1-PE antibody (red). Unstained cells (black) and cells stained with anti-mIFNγ-PE (blue) served as negative controls. (C) Exogenous hTIM1 increases the entry of various pseudoviruses in 293T cells. 293T cells were transfected with plasmids expressing hTIM1 or, as a negative control, hACE2. 48 h later cells were infected with MLV pseudoviruses or WNV VLPs, both carrying the GFP reporter gene. The following day, GFP expression was quantified by flow cytometry. Fold changes in entry were calculated by dividing mean fluorescence intensity observed in hTIM1-expressing 293T cells by those in hACE2-expressing 293T cells. Figure shows mean+SD from three independent, duplicated experiments. (D) hTIM1 usage by pseudoviruses was similarly assessed in 3T3 cells transduced with hTIM1 or hACE2. (E) Entry inhibition by an anti-hTIM1 antibody parallels hTIM1 use by pseudoviruses. 293T cells transduced with hACE2 (mock) or hTIM1 were preincubated for 30 min at room temperature with medium alone (none), the anti-hTIM1 antibody 3D1 or mIgG, and infected with pseudoviruses overnight in the presence of the respective blocking agents. Infection levels were normalized to those of untreated hTIM1-expressing cells. Figure shows mean+SD from two independent, duplicated experiments. (F) Human Huh7 cells express high levels of TIM1. Huh7 cells and control cells were stained for TIM1 expression as in A. (G) An anti-hTIM1 antibody inhibits entry of various pseudoviruses in Huh7 cells. Huh7 cells were incubated with antibodies and infected as in E. Infection levels were assessed 48 h later as in C and normalized to those of untreated cells. Figure shows mean+SD from three independent, duplicated experiments.</p
    corecore