122 research outputs found

    Higher polymerase activity of a human influenza virus enhances activation of the hemagglutinin-induced Raf/MEK/ERK signal cascade

    Get PDF
    Influenza viruses replicate within the nucleus of infected cells. Viral genomic RNA, three polymerase subunits (PB2, PB1, and PA), and the nucleoprotein (NP) form ribonucleoprotein complexes (RNPs) that are exported from the nucleus late during the infectious cycle. The virus-induced Raf/MEK/ERK (MAPK) signal cascade is crucial for efficient virus replication. Blockade of this pathway retards RNP export and reduces virus titers. Hemagglutinin (HA) accumulation and its tight association with lipid rafts activate ERK and enhance localization of cytoplasmic RNPs. We studied the induction of MAPK signal cascade by two seasonal human influenza A viruses A/HK/218449/06 (H3N2) and A/HK/218847/06 (H1N1) that differed substantially in their replication efficiency in tissue culture. Infection with H3N2 virus, which replicates efficiently, resulted in higher HA expression and its accumulation on the cell membrane, leading to substantially increased activation of MAPK signaling compared to that caused by H1N1 subtype. More H3N2-HAs were expressed and accumulated on the cell membrane than did H1N1-HAs. Viral polymerase genes, particularly H3N2-PB1 and H3N2-PB2, were observed to contribute to increased viral polymerase activity. Applying plasmid-based reverse genetics to analyze the role of PB1 protein in activating HA-induced MAPK cascade showed that recombinant H1N1 virus possessing the H3N2-PB1 (rgH1N1/H3N2-PB1) induced greater ERK activation, resulting in increased nuclear export of the viral genome and higr virus titers. We conclude that enhanced viral polymerase activity promotes the replication and transcription of viral RNA leading to increased accumulation of HA on the cell surface and thereby resulting in an upregulation of the MAPK cascade and more efficient nuclear RNP-export as well as virus production

    Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand

    Get PDF
    Mononuclear phagocytes have been attributed a crucial role in the host defense toward influenza virus (IV), but their contribution to influenza-induced lung failure is incompletely understood. We demonstrate for the first time that lung-recruited “exudate” macrophages significantly contribute to alveolar epithelial cell (AEC) apoptosis by the release of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) in a murine model of influenza-induced pneumonia. Using CC-chemokine receptor 2–deficient (CCR2−/−) mice characterized by defective inflammatory macrophage recruitment, and blocking anti-CCR2 antibodies, we show that exudate macrophage accumulation in the lungs of influenza-infected mice is associated with pronounced AEC apoptosis and increased lung leakage and mortality. Among several proapoptotic mediators analyzed, TRAIL messenger RNA was found to be markedly up-regulated in alveolar exudate macrophages as compared with peripheral blood monocytes. Moreover, among the different alveolar-recruited leukocyte subsets, TRAIL protein was predominantly expressed on macrophages. Finally, abrogation of TRAIL signaling in exudate macrophages resulted in significantly reduced AEC apoptosis, attenuated lung leakage, and increased survival upon IV infection. Collectively, these findings demonstrate a key role for exudate macrophages in the induction of alveolar leakage and mortality in IV pneumonia. Epithelial cell apoptosis induced by TRAIL-expressing macrophages is identified as a major underlying mechanism

    Macrophage-expressed IFN-ÎČ contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia

    Get PDF
    Influenza viruses (IV) cause pneumonia in humans with progression to lung failure and fatal outcome. Dysregulated release of cytokines including type I interferons (IFNs) has been attributed a crucial role in immune-mediated pulmonary injury during severe IV infection. Using ex vivo and in vivo IV infection models, we demonstrate that alveolar macrophage (AM)-expressed IFN-ÎČ significantly contributes to IV-induced alveolar epithelial cell (AEC) injury by autocrine induction of the pro-apoptotic factor TNF-related apoptosis- inducing ligand (TRAIL). Of note, TRAIL was highly upregulated in and released from AM of patients with pandemic H1N1 IV-induced acute lung injury. Elucidating the cell-specific underlying signalling pathways revealed that IV infection induced IFN-ÎČ release in AM in a protein kinase R- (PKR-) and NF-ÎșB- dependent way. Bone marrow chimeric mice lacking these signalling mediators in resident and lung-recruited AM and mice subjected to alveolar neutralization of IFN-ÎČ and TRAIL displayed reduced alveolar epithelial cell apoptosis and attenuated lung injury during severe IV pneumonia. Together, we demonstrate that macrophage-released type I IFNs, apart from their well-known anti-viral properties, contribute to IV-induced AEC damage and lung injury by autocrine induction of the pro-apoptotic factor TRAIL. Our data suggest that therapeutic targeting of the macrophage IFN-ÎČ-TRAIL axis might represent a promising strategy to attenuate IV-induced acute lung injury

    Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Black elderberries (<it>Sambucus nigra </it>L.) are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV) infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG) for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus.</p> <p>Methods</p> <p>The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays.</p> <p>Results</p> <p>For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of <it>Streptococcus pyogenes </it>and group C and G <it>Streptococci</it>, and the Gram-negative bacterium <it>Branhamella catarrhalis </it>in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses.</p> <p>Conclusion</p> <p>Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product.</p

    Influenza A virus replicates productively in primary human kidney cells and induces factors and mechanisms related to regulated cell death and renal pathology observed in virus-infected patients

    Get PDF
    IntroductionInfluenza A virus (IAV) infection can cause the often-lethal acute respiratory distress syndrome (ARDS) of the lung. Concomitantly, acute kidney injury (AKI) is frequently noticed during IAV infection, correlating with an increased mortality. The aim of this study was to elucidate the interaction of IAV with human kidney cells and, thereby, to assess the mechanisms underlying IAV-mediated AKI.MethodsTo investigate IAV effects on nephron cells we performed infectivity assays with human IAV, as well as with human isolates of either low or highly pathogenic avian IAV. Also, transcriptome and proteome analysis of IAV-infected primary human distal tubular kidney cells (DTC) was performed. Furthermore, the DTC transcriptome was compared to existing transcriptomic data from IAV-infected lung and trachea cells.ResultsWe demonstrate productive replication of all tested IAV strains on primary and immortalized nephron cells. Comparison of our transcriptome and proteome analysis of H1N1-type IAV-infected human primary distal tubular cells (DTC) with existing data from H1N1-type IAV-infected lung and primary trachea cells revealed enrichment of specific factors responsible for regulated cell death in primary DTC, which could be targeted by specific inhibitors.DiscussionIAV not only infects, but also productively replicates on different human nephron cells. Importantly, multi-omics analysis revealed regulated cell death as potential contributing factor for the clinically observed kidney pathology in influenza

    The Epidermal Growth Factor Receptor (EGFR) Promotes Uptake of Influenza A Viruses (IAV) into Host Cells

    Get PDF
    Influenza A viruses (IAV) bind to sialic-acids at cellular surfaces and enter cells by using endocytotic routes. There is evidence that this process does not occur constitutively but requires induction of specific cellular signals, including activation of PI3K that promotes virus internalization. This implies engagement of cellular signaling receptors during viral entry. Here, we present first indications for an interplay of IAV with receptor tyrosine kinases (RTKs). As representative RTK family-members the epidermal growth factor receptor (EGFR) and the c-Met receptor were studied. Modulation of expression or activity of both RTKs resulted in altered uptake of IAV, showing that these receptors transmit entry relevant signals upon virus binding. More detailed studies on EGFR function revealed that virus binding lead to clustering of lipid-rafts, suggesting that multivalent binding of IAV to cells induces a signaling platform leading to activation of EGFR and other RTKs that in turn facilitates IAV uptake

    Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses

    Get PDF
    Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential

    Combinatory Treatment with Oseltamivir and Itraconazole Targeting Both Virus and Host Factors in Influenza A Virus Infection

    No full text
    Influenza virus infections and their associated morbidity and mortality are a major threat to global health. Vaccination is an effective influenza prevention measure; however, the effectiveness is challenged by the rapid changes in the influenza virus genome leading to viral adaptation. Emerging viral resistance to the neuraminidase inhibitor oseltamivir limits the treatment of acute influenza infections. Targeting influenza virus-host interactions is a new and emerging field, and therapies based on the combination of virus- and host-directed drugs might significantly improve treatment success. We therefore assessed the combined treatment with oseltamivir and the repurposed antifungal drug itraconazole on infection of polarized broncho-epithelial Calu-3 cells with pdm09 or Panama influenza A virus strains. We detected significantly stronger antiviral activities in the combined treatment compared to monotherapy with oseltamivir, permitting lower concentrations of the drug than required for the single treatments. Bliss independence drug interaction analysis indicated that both drugs acted independently of each other. The additional antiviral effect of itraconazole might safeguard patients infected with influenza virus strains with heightened oseltamivir resistance
    • 

    corecore