1,027 research outputs found

    Substellar companions and the formation of hot subdwarf stars

    Get PDF
    "Copyright 2011 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics."We give a brief review over the observational evidence for close substellar companions to hot subdwarf stars. The formation of these core helium-burning objects requires huge mass loss of their red giant progenitors. It has been suggested that besides stellar companions substellar objects in close orbits may be able to trigger this mass loss. Such objects can be easily detected around hot subdwarf stars by medium or high resolution spectroscopy with an RV accuracy at the km s(-1)-level. Eclipsing systems of Vir type stick out of transit surveys because of their characteristic light curves. The best evidence that substellar objects in close orbits around sdBs exist and that they are able to trigger the required mass loss is provided by the eclipsing system SDSS J0820+0008, which was found in the course of the MUCHFUSS project. Furthermore, several candidate systems have been discovered.Final Accepted Versio

    First Accuracy Evaluation of NIST-F2

    Get PDF
    We report the first accuracy evaluation of NIST-F2, a second-generation laser-cooled Cesium fountain primary standard developed at the National Institute of Standards and Technology (NIST) with a cryogenic (Liquid Nitrogen) microwave cavity and flight region. The 80 K atom interrogation environment reduces the uncertainty due to the Blackbody Radiation (BBR) shift by more than a factor of 50. Also, the Ramsey microwave cavity exhibits a high Q (>50,000) at this low temperature, resulting in a reduced distributed cavity phase shift. NIST-F2 has undergone many tests and improvements since we first began operation in 2008. In the last few years NIST-F2 has been compared against a NIST maser time scale and NIST-F1 (the US primary frequency standard) as part of in-house accuracy evaluations. We report the results of nine in-house comparisons since 2010 with a focus on the most recent accuracy evaluation. This paper discusses the design of the physics package, the laser and optics systems, and the accuracy evaluation methods. The Type B fractional uncertainty of NIST-F2 is shown to be 0.11 × 10-15 and is dominated by microwave amplitude dependent effects. The most recent evaluation (August 2013) had a statistical (Type A) fractional uncertainty of 0.44 × 10-15

    EVR-CB-001: An evolving, progenitor, white dwarf compact binary discovered with the Evryscope

    Get PDF
    We present EVR-CB-001, the discovery of a compact binary with an extremely low mass (.21±0.05M.21 \pm 0.05 M_{\odot}) helium core white dwarf progenitor (pre-He WD) and an unseen low mass (.32±0.06M.32 \pm 0.06 M_{\odot}) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low mass He WDs are exotic objects (only about .2%\% of WDs are thought to be less than .3 MM_{\odot}), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (.2R\approx .2 R_{\odot}) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (Teff=18,500±500KT_{\rm eff}=18,500 \pm 500 K), and surface gravity (log(g)=4.96±0.04\log(g)=4.96 \pm 0.04) solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-RGB, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and TeffT_{\rm eff}-log(g)\log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive.Comment: 14 pages, 11 figures. Published in The Astrophysical Journa

    Molecular Dynamics Simulation of Sympathetic Crystallization of Molecular Ions

    Full text link
    It is shown that the translational degrees of freedom of a large variety of molecules, from light diatomic to heavy organic ones, can be cooled sympathetically and brought to rest (crystallized) in a linear Paul trap. The method relies on endowing the molecules with an appropriate positive charge, storage in a linear radiofrequency trap, and sympathetic cooling. Two well--known atomic coolant species, 9Be+{}^9{\hbox{Be}}^+ and 137Ba+{}^{137}{\hbox{Ba}}^+, are sufficient for cooling the molecular mass range from 2 to 20,000 amu. The large molecular charge required for simultaneous trapping of heavy molecules and of the coolant ions can easily be produced using electrospray ionization. Crystallized molecular ions offer vast opportunities for novel studies.Comment: Accepted for publication in Phys. Rev.

    Analysis of Two Eclipsing Hot Subdwarf Binaries with a Low Mass Stellar and a Brown Dwarf Companion

    Full text link
    The formation of hot subdwarf stars (sdBs), which are core helium-burning stars located on the extended horizontal branch, is still not understood. Many of the known hot subdwarf stars reside in close binary systems with short orbital periods between a few hours and a few days with either M star or white dwarf companions. Common envelope ejection is the most probable formation channel. Among these, eclipsing systems are of special importance because it is possible to constrain the parameters of both components tightly by combining spectroscopic and light curve analyses. We report the discovery of two eclipsing binaries with a brown dwarf (< 0.07 M*) and a 0.15 M* late main sequence star companion in close orbits around sdB stars.Comment: Part of PlanetsbeyondMS/2010 proceedings http://arxiv.org/html/1011.660

    'To serve and protect' when expecting to be seen negatively:The relation between police officers' contact with citizens, meta-stereotyping, and work-related well-being

    Get PDF
    We examined the relationship between contact of police officers with citizens, their (meta-)stereotypes about citizens, and their work-related well-being. Ninety-three police officers from 4 police stations in low- and high-crime regions in France completed the questionnaire. As expected, negative well-being of police officers is predicted by negative contact with citizens and their belief that police officers are stereotyped negatively by citizens. Moreover, the relationship between negative contact and negative well-being was mediated by police officers' beliefs that police officers are perceived negatively by citizens, whereas their perceptions of citizens did not mediate this relationship. Interestingly, level of crime did not influence these relationships. Together, this research shows the important role of beliefs about how one's group is stereotyped when in contact with another group as it may have consequences for people's well-being.</p
    corecore